|
import os |
|
import pandas as pd |
|
import numpy as np |
|
from typing import Any, Union |
|
from string import Template |
|
import requests |
|
import pickle |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from tqdm import tqdm |
|
import time |
|
from datetime import datetime |
|
from utils import ROOT_DIR, TMP_DIR |
|
|
|
NUM_WORKERS = 10 |
|
IPFS_POLL_INTERVAL = 0.2 |
|
INVALID_ANSWER_HEX = ( |
|
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" |
|
) |
|
INVALID_ANSWER = -1 |
|
SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None) |
|
OMEN_SUBGRAPH_URL = Template( |
|
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz""" |
|
) |
|
get_token_amounts_query = Template( |
|
""" |
|
{ |
|
|
|
fpmmLiquidities( |
|
where: { |
|
fpmm_: { |
|
creator: "${fpmm_creator}", |
|
id: "${fpmm_id}", |
|
}, |
|
id_gt: "" |
|
} |
|
orderBy: creationTimestamp |
|
orderDirection: asc |
|
) |
|
{ |
|
id |
|
outcomeTokenAmounts |
|
creationTimestamp |
|
additionalLiquidityParameter |
|
} |
|
} |
|
""" |
|
) |
|
CREATOR = "0x89c5cc945dd550BcFfb72Fe42BfF002429F46Fec" |
|
PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557" |
|
market_creators_map = {"quickstart": CREATOR, "pearl": PEARL_CREATOR} |
|
headers = { |
|
"Accept": "application/json, multipart/mixed", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
|
|
def _to_content(q: str) -> dict[str, Any]: |
|
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes.""" |
|
finalized_query = { |
|
"query": q, |
|
"variables": None, |
|
"extensions": {"headers": None}, |
|
} |
|
return finalized_query |
|
|
|
|
|
def collect_liquidity_info( |
|
index: int, fpmm_id: str, market_creator: str |
|
) -> dict[str, Any]: |
|
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY) |
|
market_creator_id = market_creators_map[market_creator] |
|
query = get_token_amounts_query.substitute( |
|
fpmm_creator=market_creator_id.lower(), |
|
fpmm_id=fpmm_id, |
|
) |
|
content_json = _to_content(query) |
|
|
|
res = requests.post(omen_subgraph, headers=headers, json=content_json) |
|
result_json = res.json() |
|
tokens_info = result_json.get("data", {}).get("fpmmLiquidities", []) |
|
if not tokens_info: |
|
return None |
|
|
|
|
|
last_info = tokens_info[-1] |
|
token_amounts = [int(x) for x in last_info["outcomeTokenAmounts"]] |
|
time.sleep(IPFS_POLL_INTERVAL) |
|
return {fpmm_id: token_amounts} |
|
|
|
|
|
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]: |
|
"""Convert hex to int""" |
|
if isinstance(x, float): |
|
return np.nan |
|
if isinstance(x, str): |
|
if x == INVALID_ANSWER_HEX: |
|
return "invalid" |
|
return "yes" if int(x, 16) == 0 else "no" |
|
|
|
|
|
def get_closed_markets(): |
|
print("Reading parquet file with closed markets data from trades") |
|
try: |
|
markets = pd.read_parquet(TMP_DIR / "fpmmTrades.parquet") |
|
except Exception: |
|
print("Error reading the parquet file") |
|
|
|
columns_of_interest = [ |
|
"fpmm.currentAnswer", |
|
"fpmm.id", |
|
"fpmm.openingTimestamp", |
|
"market_creator", |
|
] |
|
markets = markets[columns_of_interest] |
|
markets.rename( |
|
columns={ |
|
"fpmm.currentAnswer": "currentAnswer", |
|
"fpmm.openingTimestamp": "openingTimestamp", |
|
"fpmm.id": "id", |
|
}, |
|
inplace=True, |
|
) |
|
markets = markets.drop_duplicates(subset=["id"], keep="last") |
|
|
|
markets = markets.loc[markets["currentAnswer"] != INVALID_ANSWER_HEX] |
|
markets["currentAnswer"] = markets["currentAnswer"].apply( |
|
lambda x: convert_hex_to_int(x) |
|
) |
|
markets.dropna(inplace=True) |
|
markets["opening_datetime"] = markets["openingTimestamp"].apply( |
|
lambda x: datetime.fromtimestamp(int(x)) |
|
) |
|
markets = markets.sort_values(by="opening_datetime", ascending=True) |
|
return markets |
|
|
|
|
|
def kl_divergence(P, Q): |
|
""" |
|
Compute KL divergence for a single sample with two prob distributions. |
|
|
|
:param P: True distribution) |
|
:param Q: Approximating distribution) |
|
:return: KL divergence value |
|
""" |
|
|
|
if P[0] == Q[0]: |
|
return 0.0 |
|
|
|
|
|
if P[0] == Q[1]: |
|
return 20 |
|
|
|
nonzero = P > 0.0 |
|
|
|
kl_div = np.sum(P[nonzero] * np.log(P[nonzero] / Q[nonzero])) |
|
|
|
return kl_div |
|
|
|
|
|
def market_KL_divergence(market_row: pd.DataFrame) -> float: |
|
"""Function to compute the divergence based on the formula |
|
Formula in https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence""" |
|
current_answer = market_row.currentAnswer |
|
approx_prob = market_row.first_outcome_prob |
|
true_prob = 1.0 |
|
if current_answer == "no": |
|
true_prob = 0.0 |
|
|
|
|
|
|
|
P = np.array([true_prob, 1 - true_prob]) |
|
Q = np.array([approx_prob, 1 - approx_prob]) |
|
return kl_divergence(P, Q) |
|
|
|
|
|
def off_by_values(market_row: pd.DataFrame) -> float: |
|
current_answer = market_row.currentAnswer |
|
approx_prob = market_row.first_outcome_prob |
|
true_prob = 1.0 |
|
if current_answer == "no": |
|
true_prob = 0.0 |
|
|
|
|
|
|
|
P = np.array([true_prob, 1 - true_prob]) |
|
Q = np.array([approx_prob, 1 - approx_prob]) |
|
return abs(P[0] - Q[0]) * 100.0 |
|
|
|
|
|
def compute_tokens_prob(token_amounts: list) -> list: |
|
first_token_amounts = token_amounts[0] |
|
second_token_amounts = token_amounts[1] |
|
total_tokens = first_token_amounts + second_token_amounts |
|
first_token_prob = 1 - round((first_token_amounts / total_tokens), 4) |
|
return [first_token_prob, 1 - first_token_prob] |
|
|
|
|
|
def prepare_closed_markets_data(): |
|
closed_markets = get_closed_markets() |
|
closed_markets["first_outcome_prob"] = -1.0 |
|
closed_markets["second_outcome_prob"] = -1.0 |
|
total_markets = len(closed_markets) |
|
markets_no_info = [] |
|
no_info = 0 |
|
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor: |
|
futures = [] |
|
for i in range(total_markets): |
|
futures.append( |
|
executor.submit( |
|
collect_liquidity_info, |
|
i, |
|
closed_markets.iloc[i].id, |
|
closed_markets.iloc[i].market_creator, |
|
) |
|
) |
|
markets_with_info = 0 |
|
for future in tqdm( |
|
as_completed(futures), |
|
total=len(futures), |
|
desc=f"Fetching Market liquidity info", |
|
): |
|
token_amounts_dict = future.result() |
|
if token_amounts_dict: |
|
fpmm_id, token_amounts = token_amounts_dict.popitem() |
|
if token_amounts: |
|
tokens_prob = compute_tokens_prob(token_amounts) |
|
closed_markets.loc[ |
|
closed_markets["id"] == fpmm_id, "first_outcome_prob" |
|
] = tokens_prob[0] |
|
closed_markets.loc[ |
|
closed_markets["id"] == fpmm_id, "second_outcome_prob" |
|
] = tokens_prob[1] |
|
markets_with_info += 1 |
|
else: |
|
tqdm.write(f"Skipping market with no liquidity info") |
|
markets_no_info.append(i) |
|
else: |
|
tqdm.write(f"Skipping market with no liquidity info") |
|
no_info += 1 |
|
|
|
print(f"Markets with info = {markets_with_info}") |
|
|
|
closed_markets = closed_markets.loc[closed_markets["first_outcome_prob"] != -1.0] |
|
print( |
|
f"Finished computing all markets liquidity info. Final length = {len(closed_markets)}" |
|
) |
|
if len(markets_no_info) > 0: |
|
print( |
|
f"There were {len(markets_no_info)} markets with no liquidity info. Printing some index of the dataframe" |
|
) |
|
with open("no_liq_info.pickle", "wb") as file: |
|
pickle.dump(markets_no_info, file) |
|
print(markets_no_info[:1]) |
|
print(closed_markets.head()) |
|
|
|
print("Computing Kullback–Leibler (KL) divergence") |
|
closed_markets["kl_divergence"] = closed_markets.apply( |
|
lambda x: market_KL_divergence(x), axis=1 |
|
) |
|
closed_markets["off_by_perc"] = closed_markets.apply( |
|
lambda x: off_by_values(x), axis=1 |
|
) |
|
closed_markets.to_parquet(ROOT_DIR / "closed_markets_div.parquet", index=False) |
|
print("Finished preparing final dataset for visualization") |
|
print(closed_markets.head()) |
|
|
|
|
|
if __name__ == "__main__": |
|
prepare_closed_markets_data() |
|
|