|
import kornia as K |
|
import torch |
|
from torchgeo.datasets.geo import NonGeoDataset |
|
import os |
|
from collections.abc import Callable, Sequence |
|
from torch import Tensor |
|
import numpy as np |
|
import rasterio |
|
import cv2 |
|
from pyproj import Transformer |
|
from datetime import date |
|
from typing import TypeAlias, ClassVar |
|
import pathlib |
|
|
|
import logging |
|
|
|
logging.getLogger("rasterio").setLevel(logging.ERROR) |
|
Path: TypeAlias = str | os.PathLike[str] |
|
|
|
class SenBenchDFC2020(NonGeoDataset): |
|
url = None |
|
|
|
splits = ('train', 'val', 'test') |
|
|
|
label_filenames = { |
|
'train': 'dfc-train-new.csv', |
|
'val': 'dfc-val-new.csv', |
|
'test': 'dfc-test-new.csv', |
|
} |
|
s1_band_names = ( |
|
'VV', 'VH' |
|
) |
|
s2_band_names = ( |
|
'B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12' |
|
) |
|
|
|
rgb_band_names = ('B04', 'B03', 'B02') |
|
|
|
Cls_index = { |
|
'Background': 0, |
|
'Forest': 1, |
|
'Shrubland': 2, |
|
'Savanna': 3, |
|
'Grassland': 4, |
|
'Wetland': 5, |
|
'Cropland': 6, |
|
'Urban/Built-up': 7, |
|
'Snow/Ice': 8, |
|
'Barren': 9, |
|
'Water': 10 |
|
} |
|
|
|
cls_mapping = {0:255, 1:0, 2:1, 3:255, 4:2, 5:3, 6:4, 7:5, 8:255, 9:6, 10:7} |
|
|
|
def __init__( |
|
self, |
|
root: Path = 'data', |
|
split: str = 'train', |
|
bands: Sequence[str] = s2_band_names, |
|
modality = 's2', |
|
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, |
|
download: bool = False, |
|
) -> None: |
|
|
|
self.root = root |
|
self.transforms = transforms |
|
self.download = download |
|
|
|
|
|
assert split in ['train', 'val', 'test'] |
|
|
|
self.bands = bands |
|
self.modality = modality |
|
if self.modality== 's1': |
|
self.all_band_names = self.s1_band_names |
|
else: |
|
self.all_band_names = self.s2_band_names |
|
self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names] |
|
|
|
self.img_dir = os.path.join(self.root, modality) |
|
self.label_dir = os.path.join(self.root, 'dfc') |
|
|
|
self.label_csv = os.path.join(self.root, self.label_filenames[split]) |
|
self.label_fnames = [] |
|
with open(self.label_csv, 'r') as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
fname = line.strip() |
|
self.label_fnames.append(fname) |
|
|
|
|
|
self.patch_area = (16*10/1000)**2 |
|
|
|
def __len__(self): |
|
return len(self.label_fnames) |
|
|
|
def __getitem__(self, index): |
|
|
|
images, meta_infos = self._load_image(index) |
|
label = self._load_target(index) |
|
sample = {'image': images, 'mask': label, 'meta': meta_infos} |
|
|
|
if self.transforms is not None: |
|
sample = self.transforms(sample) |
|
|
|
return sample |
|
|
|
|
|
def _load_image(self, index): |
|
|
|
label_fname = self.label_fnames[index] |
|
img_fname = label_fname.replace('dfc',self.modality) |
|
img_path = os.path.join(self.img_dir, img_fname) |
|
|
|
with rasterio.open(img_path) as src: |
|
img = src.read(self.band_indices).astype('float32') |
|
img = torch.from_numpy(img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32) |
|
meta_info = torch.from_numpy(meta_info) |
|
|
|
return img, meta_info |
|
|
|
def _load_target(self, index): |
|
|
|
label_fname = self.label_fnames[index] |
|
label_path = os.path.join(self.label_dir, label_fname) |
|
|
|
with rasterio.open(label_path) as src: |
|
label = src.read(1) |
|
|
|
|
|
label_remap = label.copy() |
|
for orig_label, new_label in self.cls_mapping.items(): |
|
label_remap[label == orig_label] = new_label |
|
|
|
labels = torch.from_numpy(label_remap).long() |
|
|
|
return labels |
|
|
|
|
|
|
|
class SegDataAugmentation(torch.nn.Module): |
|
|
|
def __init__(self, split, size, band_stats): |
|
super().__init__() |
|
|
|
if band_stats is not None: |
|
mean = band_stats['mean'] |
|
std = band_stats['std'] |
|
else: |
|
mean = [0.0] |
|
std = [1.0] |
|
|
|
mean = torch.Tensor(mean) |
|
std = torch.Tensor(std) |
|
|
|
self.norm = K.augmentation.Normalize(mean=mean, std=std) |
|
|
|
if split == "train": |
|
self.transform = K.augmentation.AugmentationSequential( |
|
K.augmentation.Resize(size=size, align_corners=True), |
|
|
|
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True), |
|
K.augmentation.RandomHorizontalFlip(p=0.5), |
|
K.augmentation.RandomVerticalFlip(p=0.5), |
|
data_keys=["input", "mask"], |
|
) |
|
else: |
|
self.transform = K.augmentation.AugmentationSequential( |
|
K.augmentation.Resize(size=size, align_corners=True), |
|
data_keys=["input", "mask"], |
|
) |
|
|
|
@torch.no_grad() |
|
def forward(self, batch: dict[str,]): |
|
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" |
|
x,mask = batch["image"], batch["mask"] |
|
x = self.norm(x) |
|
x_out, mask_out = self.transform(x, mask) |
|
return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"] |
|
|
|
|
|
class SenBenchDFC2020Dataset: |
|
def __init__(self, config): |
|
self.dataset_config = config |
|
self.img_size = (config.image_resolution, config.image_resolution) |
|
self.root_dir = config.data_path |
|
self.bands = config.band_names |
|
self.modality = config.modality |
|
self.band_stats = config.band_stats |
|
|
|
def create_dataset(self): |
|
train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats) |
|
eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats) |
|
|
|
dataset_train = SenBenchDFC2020( |
|
root=self.root_dir, split="train", bands=self.bands, modality=self.modality, transforms=train_transform |
|
) |
|
dataset_val = SenBenchDFC2020( |
|
root=self.root_dir, split="val", bands=self.bands, modality=self.modality, transforms=eval_transform |
|
) |
|
dataset_test = SenBenchDFC2020( |
|
root=self.root_dir, split="test", bands=self.bands, modality=self.modality, transforms=eval_transform |
|
) |
|
|
|
return dataset_train, dataset_val, dataset_test |