wangyi111's picture
Rename deprecated/eurosat_s1sar/old/dataset_eu.py to deprecated/eurosat_s1sar/dataset_eu.py
1702261 verified
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, Subset
from pathlib import Path
import os
import rasterio
import cv2
import pdb
from pyproj import Transformer
EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp")
ALL_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'B8A']
S2A_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B11', 'B12', 'B8A']
RGB_BANDS = ['B04', 'B03', 'B02']
S1_BANDS = ['VV', 'VH']
### SSL4EO stats
BAND_STATS = {
'mean': {
'B01': 1353.72696296,
'B02': 1117.20222222,
'B03': 1041.8842963,
'B04': 946.554,
'B05': 1199.18896296,
'B06': 2003.00696296,
'B07': 2374.00874074,
'B08': 2301.22014815,
'B8A': 2599.78311111,
'B09': 732.18207407,
'B10': 12.09952894,
'B11': 1820.69659259,
'B12': 1118.20259259,
'VV': -12.54847273,
'VH': -20.19237134
},
'std': {
'B01': 897.27143653,
'B02': 736.01759721,
'B03': 684.77615743,
'B04': 620.02902871,
'B05': 791.86263829,
'B06': 1341.28018273,
'B07': 1595.39989386,
'B08': 1545.52915718,
'B8A': 1750.12066835,
'B09': 475.11595216,
'B10': 98.26600935,
'B11': 1216.48651476,
'B12': 736.6981037,
'VV': 5.25697717,
'VH': 5.91150917
}
}
# BAND_STATS_S1 = {
# 'mean': {
# 'VV': -12.54847273,
# 'VH': -20.19237134
# },
# 'std': {
# 'VV': 5.25697717,
# 'VH': 5.91150917
# }
# }
def is_valid_file(filename):
return filename.lower().endswith(EXTENSIONS)
def normalize(img, mean, std):
min_value = mean - 2 * std
max_value = mean + 2 * std
img = (img - min_value) / (max_value - min_value) * 255.0
img = np.clip(img, 0, 255).astype(np.uint8)
#img = (img - min_value) / (max_value - min_value)
#img = np.clip(img, 0, 1).astype(np.float32)
return img
class EurosatDataset(Dataset):
def __init__(self, root, bands='B2', split='train', transform=None, normalize=False, meta=False):
self.root = Path(root,split)
self.transform = transform
if bands=='B13':
self.bands = ALL_BANDS
elif bands=='B12':
self.bands = S2A_BANDS
elif bands=='RGB':
self.bands = RGB_BANDS
elif bands=='B2':
self.bands = S1_BANDS
self.normalize = normalize
self.classes = sorted([d.name for d in self.root.iterdir() if d.is_dir()])
self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)}
self.samples = []
self.targets = []
#pdb.set_trace()
for froot, _, fnames in sorted(os.walk(self.root, followlinks=True)):
for fname in sorted(fnames):
if is_valid_file(fname):
path = os.path.join(froot, fname)
self.samples.append(path)
target = self.class_to_idx[Path(path).parts[-2]]
self.targets.append(target)
#print(self.root)
#print(f"Found {len(self.samples)} images belonging to {len(self.classes)} classes")
self.meta = meta
def __getitem__(self, index):
path = self.samples[index]
target = self.targets[index]
with rasterio.open(path) as f:
if self.bands == ALL_BANDS:
array = f.read().astype(np.int16)
elif self.bands == S2A_BANDS:
array = f.read((1,2,3,4,5,6,7,8,9,11,12,13)).astype(np.int16)
elif self.bands == RGB_BANDS:
array = f.read((4,3,2)).astype(np.int16)
elif self.bands == S1_BANDS:
array = f.read().astype(np.float32)
img = array.transpose(1, 2, 0)
if self.meta:
# get lon, lat, time
cx,cy = f.xy(f.height // 2, f.width // 2)
# convert to lon, lat
crs_transformer = Transformer.from_crs(f.crs, 'epsg:4326')
lon, lat = crs_transformer.transform(cx,cy)
# no time
meta_info = np.array([lon, lat, 0, 0]).astype(np.float32)
#meta_info = np.array([0, 0, 0, 0]).astype(np.float32)
#meta_info = np.array([np.nan, np.nan, np.nan, np.nan]).astype(np.float32)
channels = []
for i,b in enumerate(self.bands):
ch = img[:,:,i]
if self.normalize:
ch = normalize(ch, mean=BAND_STATS['mean'][b], std=BAND_STATS['std'][b])
elif self.bands == S2A_BANDS:
ch = (ch / 10000.0 * 255.0).astype('uint8')
if b=='B8A': # EuSAT band order is different than SSL4EO
channels.insert(8,ch)
else:
channels.append(ch)
#img = np.dstack(channels)
img = np.stack(channels, axis=0).astype('float32') / 255.0
if self.transform is not None:
img = self.transform(img)
if self.meta:
return img, target, meta_info
else:
return img, target
def __len__(self):
return len(self.samples)
class Subset(Dataset):
r"""
Subset of a dataset at specified indices.
Arguments:
dataset (Dataset): The whole Dataset
indices (sequence): Indices in the whole set selected for subset
"""
def __init__(self, dataset, indices, transform=None):
self.dataset = dataset
self.indices = indices
self.transform = transform
def __getitem__(self, idx):
im, target = self.dataset[self.indices[idx]]
if self.transform:
im = self.transform(im)
return im, target
def __len__(self):
return len(self.indices)