Copernicus-Bench / deprecated /lc100_s3olci /dataset_lc100_s3olci_cls.py
wangyi111's picture
Rename deprecated/lc100_s3olci/old/dataset_lc100_s3olci_cls.py to deprecated/lc100_s3olci/dataset_lc100_s3olci_cls.py
d66a3f5 verified
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import rasterio
import torch
import numpy as np
from pyproj import Transformer
from datetime import date
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]
LC100_CLSID = {
0: 0, # unknown
20: 1,
30: 2,
40: 3,
50: 4,
60: 5,
70: 6,
80: 7,
90: 8,
100: 9,
111: 10,
112: 11,
113: 12,
114: 13,
115: 14,
116: 15,
121: 16,
122: 17,
123: 18,
124: 19,
125: 20,
126: 21,
200: 22, # ocean
}
class S3OLCI_LC100ClsDataset(Dataset):
'''
6908/1727 train/test images 96x96x21
23 classes multilabel LULC
nodata: -inf
time series: 1-4 time stamps / location
'''
def __init__(self, root_dir, mode='static', split='train', meta=False):
self.root_dir = root_dir
self.mode = mode
self.meta = meta
self.img_dir = os.path.join(root_dir, split, 's3_olci')
self.lc100_cls = os.path.join(root_dir, split, 'lc100_multilabel.csv')
self.fnames = []
self.labels = []
with open(self.lc100_cls, 'r') as f:
lines = f.readlines()
for line in lines:
self.fnames.append(line.strip().split(',')[0])
self.labels.append(list(map(int, line.strip().split(',')[1:])))
if self.mode == 'static':
self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv')
with open(self.static_csv, 'r') as f:
lines = f.readlines()
self.static_img = {}
for line in lines:
dirname = line.strip().split(',')[0]
img_fname = line.strip().split(',')[1]
self.static_img[dirname] = img_fname
if self.meta:
self.reference_date = date(1970, 1, 1)
def __len__(self):
return len(self.fnames)
def __getitem__(self, idx):
fname = self.fnames[idx]
s3_path = os.path.join(self.img_dir, fname)
if self.mode == 'static':
img_fname = self.static_img[fname]
s3_paths = [os.path.join(s3_path, img_fname)]
else:
img_fnames = os.listdir(s3_path)
s3_paths = []
for img_fname in img_fnames:
s3_paths.append(os.path.join(s3_path, img_fname))
imgs = []
img_paths = []
meta_infos = []
for img_path in s3_paths:
with rasterio.open(img_path) as src:
img = src.read()
chs = []
for b in range(21):
ch = cv2.resize(img[b], (96,96), interpolation=cv2.INTER_CUBIC)
chs.append(ch)
img = np.stack(chs)
img[np.isnan(img)] = 0
for b in range(21):
img[b] = img[b]*S3_OLCI_SCALE[b]
img = torch.from_numpy(img).float()
if self.meta:
# get lon, lat
cx,cy = src.xy(src.height // 2, src.width // 2)
# convert to lon, lat
#crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
#lon, lat = crs_transformer.transform(cx,cy)
lon, lat = cx, cy
# get time
img_fname = os.path.basename(img_path)
date_str = img_fname.split('_')[1][:8]
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
delta = (date_obj - self.reference_date).days
meta_info = np.array([lon, lat, delta, 0]).astype(np.float32)
else:
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
imgs.append(img)
img_paths.append(img_path)
meta_infos.append(meta_info)
if self.mode == 'series':
# pad to 4 images if less than 4
while len(imgs) < 4:
imgs.append(img)
img_paths.append(img_path)
meta_infos.append(meta_info)
label = self.labels[idx]
labels = torch.zeros(23)
# turn into one-hot
for l in label:
cls_id = LC100_CLSID[l]
labels[cls_id] = 1
if self.mode == 'static':
return imgs[0], meta_infos[0], labels
elif self.mode == 'series':
return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], labels
if __name__ == '__main__':
dataset = S3OLCI_LC100ClsDataset(root_dir='../data/downstream/cgls_lc100', mode='static', split=None, meta=True)
dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=4)
for i, data in enumerate(dataloader):
#print(data[0].shape)
#print(data[1].shape)
#print(data[1])
#print(data[2])
#print(data[0].max())
#break
pass