|
import kornia.augmentation as K |
|
import torch |
|
from torchgeo.datasets import So2Sat |
|
import os |
|
from collections.abc import Callable, Sequence |
|
from torch import Tensor |
|
import numpy as np |
|
import rasterio |
|
from pyproj import Transformer |
|
import h5py |
|
from typing import TypeAlias, ClassVar |
|
import pathlib |
|
Path: TypeAlias = str | os.PathLike[str] |
|
|
|
class SenBenchSo2Sat(So2Sat): |
|
|
|
versions = ('4_senbench') |
|
filenames_by_version: ClassVar[dict[str, dict[str, str]]] = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'4_senbench': { |
|
'train': 'train-new.h5', |
|
'val': 'val-new.h5', |
|
'test': 'test-new.h5' |
|
} |
|
} |
|
|
|
classes = ( |
|
'Compact high rise', |
|
'Compact mid rise', |
|
'Compact low rise', |
|
'Open high rise', |
|
'Open mid rise', |
|
'Open low rise', |
|
'Lightweight low rise', |
|
'Large low rise', |
|
'Sparsely built', |
|
'Heavy industry', |
|
'Dense trees', |
|
'Scattered trees', |
|
'Bush, scrub', |
|
'Low plants', |
|
'Bare rock or paved', |
|
'Bare soil or sand', |
|
'Water', |
|
) |
|
|
|
all_s1_band_names = ( |
|
'S1_B1', |
|
'S1_B2', |
|
'S1_B3', |
|
'S1_B4', |
|
'S1_B5', |
|
'S1_B6', |
|
'S1_B7', |
|
'S1_B8', |
|
) |
|
all_s2_band_names = ( |
|
'S2_B02', |
|
'S2_B03', |
|
'S2_B04', |
|
'S2_B05', |
|
'S2_B06', |
|
'S2_B07', |
|
'S2_B08', |
|
'S2_B8A', |
|
'S2_B11', |
|
'S2_B12', |
|
) |
|
all_band_names = all_s1_band_names + all_s2_band_names |
|
|
|
rgb_bands = ('S2_B04', 'S2_B03', 'S2_B02') |
|
|
|
BAND_SETS: ClassVar[dict[str, tuple[str, ...]]] = { |
|
'all': all_band_names, |
|
's1': all_s1_band_names, |
|
's2': all_s2_band_names, |
|
'rgb': rgb_bands, |
|
} |
|
|
|
def __init__( |
|
self, |
|
root: Path = 'data', |
|
version: str = '4_senbench', |
|
split: str = 'train', |
|
bands: Sequence[str] = BAND_SETS['s2'], |
|
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, |
|
download: bool = False, |
|
) -> None: |
|
|
|
|
|
|
|
assert version in self.versions |
|
assert split in self.filenames_by_version[version] |
|
|
|
self._validate_bands(bands) |
|
self.s1_band_indices: np.typing.NDArray[np.int_] = np.array( |
|
[ |
|
self.all_s1_band_names.index(b) |
|
for b in bands |
|
if b in self.all_s1_band_names |
|
] |
|
).astype(int) |
|
|
|
self.s1_band_names = [self.all_s1_band_names[i] for i in self.s1_band_indices] |
|
|
|
self.s2_band_indices: np.typing.NDArray[np.int_] = np.array( |
|
[ |
|
self.all_s2_band_names.index(b) |
|
for b in bands |
|
if b in self.all_s2_band_names |
|
] |
|
).astype(int) |
|
|
|
self.s2_band_names = [self.all_s2_band_names[i] for i in self.s2_band_indices] |
|
|
|
self.bands = bands |
|
|
|
self.root = root |
|
self.version = version |
|
self.split = split |
|
self.transforms = transforms |
|
|
|
|
|
self.fn = os.path.join(self.root, self.filenames_by_version[version][split]) |
|
|
|
|
|
|
|
|
|
with h5py.File(self.fn, 'r') as f: |
|
self.size: int = f['label'].shape[0] |
|
|
|
self.patch_area = (16*10/1000)**2 |
|
|
|
|
|
def __getitem__(self, index: int) -> dict[str, Tensor]: |
|
"""Return an index within the dataset. |
|
|
|
Args: |
|
index: index to return |
|
|
|
Returns: |
|
data and label at that index |
|
""" |
|
|
|
with h5py.File(self.fn, 'r') as f: |
|
|
|
|
|
s2 = f['sen2'][index].astype(np.float32) |
|
s2 = np.take(s2, indices=self.s2_band_indices, axis=2) |
|
|
|
|
|
label = torch.tensor(f['label'][index].argmax()) |
|
|
|
|
|
s2 = np.rollaxis(s2, 2, 0) |
|
|
|
|
|
s2 = torch.from_numpy(s2) |
|
|
|
meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32) |
|
|
|
sample = {'image': s2, 'label': label, 'meta': torch.from_numpy(meta_info)} |
|
|
|
if self.transforms is not None: |
|
sample = self.transforms(sample) |
|
|
|
return sample |
|
|
|
|
|
class ClsDataAugmentation(torch.nn.Module): |
|
|
|
def __init__(self, split, size, band_stats): |
|
super().__init__() |
|
|
|
if band_stats is not None: |
|
mean = band_stats['mean'] |
|
std = band_stats['std'] |
|
else: |
|
mean = [0.0] |
|
std = [1.0] |
|
|
|
mean = torch.Tensor(mean) |
|
std = torch.Tensor(std) |
|
|
|
if split == "train": |
|
self.transform = torch.nn.Sequential( |
|
K.Normalize(mean=mean, std=std), |
|
K.Resize(size=size, align_corners=True), |
|
|
|
K.RandomHorizontalFlip(p=0.5), |
|
K.RandomVerticalFlip(p=0.5), |
|
) |
|
else: |
|
self.transform = torch.nn.Sequential( |
|
K.Normalize(mean=mean, std=std), |
|
K.Resize(size=size, align_corners=True), |
|
) |
|
|
|
@torch.no_grad() |
|
def forward(self, batch: dict[str,]): |
|
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" |
|
x_out = self.transform(batch["image"]).squeeze(0) |
|
return x_out, batch["label"], batch["meta"] |
|
|
|
|
|
class SenBenchSo2SatDataset: |
|
def __init__(self, config): |
|
self.dataset_config = config |
|
self.img_size = (config.image_resolution, config.image_resolution) |
|
self.root_dir = config.data_path |
|
self.bands = config.band_names |
|
self.version = config.version |
|
self.band_stats = config.band_stats |
|
|
|
def create_dataset(self): |
|
train_transform = ClsDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats) |
|
eval_transform = ClsDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats) |
|
|
|
dataset_train = SenBenchSo2Sat( |
|
root=self.root_dir, version=self.version, split="train", bands=self.bands, transforms=train_transform |
|
) |
|
dataset_val = SenBenchSo2Sat( |
|
root=self.root_dir, version=self.version, split="val", bands=self.bands, transforms=eval_transform |
|
) |
|
dataset_test = SenBenchSo2Sat( |
|
root=self.root_dir, version=self.version, split="test", bands=self.bands, transforms=eval_transform |
|
) |
|
|
|
return dataset_train, dataset_val, dataset_test |