dataset_info:
features:
- name: id
dtype: string
- name: question
dtype: string
- name: options
list: string
- name: answer
dtype: string
- name: task_plan
dtype: string
- name: image
dtype: image
splits:
- name: 3d_how_many
num_bytes: 964232493
num_examples: 654
- name: 3d_what
num_bytes: 944850246
num_examples: 645
- name: 3d_where
num_bytes: 989034725
num_examples: 669
- name: 3d_what_attribute
num_bytes: 931184419
num_examples: 639
- name: 3d_where_attribute
num_bytes: 897312251
num_examples: 609
- name: 3d_what_distance
num_bytes: 836764094
num_examples: 585
- name: 3d_where_distance
num_bytes: 925465404
num_examples: 645
- name: 3d_what_attribute_distance
num_bytes: 970396774
num_examples: 678
- name: 3d_what_size
num_bytes: 988177167
num_examples: 675
- name: 3d_where_size
num_bytes: 898574558
num_examples: 618
- name: 3d_what_attribute_size
num_bytes: 993251978
num_examples: 678
- name: 2d_how_many
num_bytes: 40708392
num_examples: 606
- name: 2d_what
num_bytes: 46567124
num_examples: 681
- name: 2d_where
num_bytes: 47803083
num_examples: 699
- name: 2d_what_attribute
num_bytes: 46026755
num_examples: 657
- name: 2d_where_attribute
num_bytes: 47675852
num_examples: 636
- name: sg_what_object
num_bytes: 24281703
num_examples: 633
- name: sg_what_attribute
num_bytes: 26390284
num_examples: 645
- name: sg_what_relation
num_bytes: 27153148
num_examples: 618
download_size: 10589322704
dataset_size: 10645850450
configs:
- config_name: default
data_files:
- split: 3d_how_many
path: data/3d_how_many-*
- split: 3d_what
path: data/3d_what-*
- split: 3d_where
path: data/3d_where-*
- split: 3d_what_attribute
path: data/3d_what_attribute-*
- split: 3d_where_attribute
path: data/3d_where_attribute-*
- split: 3d_what_distance
path: data/3d_what_distance-*
- split: 3d_where_distance
path: data/3d_where_distance-*
- split: 3d_what_attribute_distance
path: data/3d_what_attribute_distance-*
- split: 3d_what_size
path: data/3d_what_size-*
- split: 3d_where_size
path: data/3d_where_size-*
- split: 3d_what_attribute_size
path: data/3d_what_attribute_size-*
- split: 2d_how_many
path: data/2d_how_many-*
- split: 2d_what
path: data/2d_what-*
- split: 2d_where
path: data/2d_where-*
- split: 2d_what_attribute
path: data/2d_what_attribute-*
- split: 2d_where_attribute
path: data/2d_where_attribute-*
- split: sg_what_object
path: data/sg_what_object-*
- split: sg_what_attribute
path: data/sg_what_attribute-*
- split: sg_what_relation
path: data/sg_what_relation-*
Dataset Card for TaskMeAnything-v1-imageqa-random
TaskMeAnything-v1-imageqa-random dataset
π Website | π Paper | π€ Huggingface | π» Interface
If you like our project, please give us a star β on GitHub for latest update.
TaskMeAnything-v1-Random
TaskMeAnything-v1-imageqa-random is a dataset which using randomly sampled questions from TaskMeAnything-v1, including 5,700 ImageQA questions. The dataset contains 19 splits, while each splits contains 300 questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: image, question, options, answer and its corresponding task plan.
Load TaskMeAnything-v1-Random ImageQA Dataset
import datasets
dataset_name = 'weikaih/TaskMeAnything-v1-imageqa-random'
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT)
where TASK_GENERATOR_SPLIT
is one of the task generators, eg, random_2d_how_many
.
Evaluation Results
Overall
Breakdown performance on each task types
Out-of-Scope Use
This dataset should not be used for training models.
Disclaimers
TaskMeAnything and its associated resources are provided for research and educational purposes only. The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. Users are responsible for ensuring their use complies with applicable laws and regulations. The project is not liable for any damages or losses resulting from the use of these resources.
Contact
- Jieyu Zhang: jieyuz2@cs.washington.edu
Citation
BibTeX:
@article{zhang2024task,
title={Task Me Anything},
author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay},
journal={arXiv preprint arXiv:2406.11775},
year={2024}
}