librarian-bot's picture
Librarian Bot: Add language metadata for dataset
758ff53 verified
|
raw
history blame
4.67 kB
metadata
language:
  - en
dataset_info:
  features:
    - name: id
      dtype: string
    - name: question
      dtype: string
    - name: options
      list: string
    - name: answer
      dtype: string
    - name: task_plan
      dtype: string
    - name: video
      dtype: binary
  splits:
    - name: video_3d_what_move
      num_bytes: 13156784
      num_examples: 408
    - name: video_3d_where_move
      num_bytes: 11911124
      num_examples: 402
    - name: video_3d_what_attribute_move
      num_bytes: 11401767
      num_examples: 390
    - name: video_3d_what_rotate
      num_bytes: 17223350
      num_examples: 411
    - name: video_3d_where_rotate
      num_bytes: 14860244
      num_examples: 378
    - name: video_3d_what_attribute_rotate
      num_bytes: 15306580
      num_examples: 405
    - name: video_sg_what_object
      num_bytes: 654650009
      num_examples: 387
    - name: video_sg_what_relation
      num_bytes: 707499456
      num_examples: 411
    - name: video_sg_what_action
      num_bytes: 636426745
      num_examples: 375
  download_size: 748458643
  dataset_size: 2082436059
configs:
  - config_name: default
    data_files:
      - split: video_3d_what_move
        path: data/video_3d_what_move-*
      - split: video_3d_where_move
        path: data/video_3d_where_move-*
      - split: video_3d_what_attribute_move
        path: data/video_3d_what_attribute_move-*
      - split: video_3d_what_rotate
        path: data/video_3d_what_rotate-*
      - split: video_3d_where_rotate
        path: data/video_3d_where_rotate-*
      - split: video_3d_what_attribute_rotate
        path: data/video_3d_what_attribute_rotate-*
      - split: video_sg_what_object
        path: data/video_sg_what_object-*
      - split: video_sg_what_relation
        path: data/video_sg_what_relation-*
      - split: video_sg_what_action
        path: data/video_sg_what_action-*

Dataset Card for TaskMeAnything-v1-videoqa-2024

TaskMeAnything-v1-videoqa-2024 benchmark dataset

🌐 Website | πŸ“‘ Paper | πŸ€— Huggingface | πŸ’» Interface

If you like our project, please give us a star ⭐ on GitHub for latest update.

TaskMeAnything-v1-2024-Videoqa

TaskMeAnything-v1-videoqa-2024 is a benchmark for reflecting the current progress of MLMs by automatically finding tasks that SOTA MLMs struggle with using the TaskMeAnything Top-K queries. This benchmark includes 2,394 3d video questions and 1,173 real video questions that the TaskMeAnything algorithm automatically approximated as challenging for over 12 popular MLMs.

The dataset contains 19 splits, while each splits contains 300+ questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: video, question, options, answer and its corresponding task plan.

Load TaskMeAnything-v1-2024 VideoQA Dataset

import datasets

dataset_name = 'weikaih/TaskMeAnything-v1-videoqa-2024'
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT)

where TASK_GENERATOR_SPLIT is one of the task generators, eg, 2024_2d_how_many.

Evaluation Results

Overall

image/png

Breakdown performance on each task types

image/png

image/png

Out-of-Scope Use

This dataset should not be used for training models.

Disclaimers

TaskMeAnything and its associated resources are provided for research and educational purposes only. The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. Users are responsible for ensuring their use complies with applicable laws and regulations. The project is not liable for any damages or losses resulting from the use of these resources.

Contact

Citation

BibTeX:

@article{zhang2024task,
  title={Task Me Anything},
  author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay},
  journal={arXiv preprint arXiv:2406.11775},
  year={2024}
}