id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
93c753639227-1
clear() → None[source]¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary_buffer.ConversationSummaryBufferMemory.html
93c753639227-2
Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict_new_summary(messages: List[BaseMessage], existing_summary: str) → str¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary_buffer.ConversationSummaryBufferMemory.html
93c753639227-3
predict_new_summary(messages: List[BaseMessage], existing_summary: str) → str¶ prune() → None[source]¶ Prune buffer if it exceeds max token limit save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property buffer: List[langchain.schema.messages.BaseMessage]¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using ConversationSummaryBufferMemory¶ Set env var OPENAI_API_KEY or load from a .env file: Conversation Summary Buffer
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary_buffer.ConversationSummaryBufferMemory.html
b3a201120362-0
langchain.memory.chat_message_histories.file.FileChatMessageHistory¶ class langchain.memory.chat_message_histories.file.FileChatMessageHistory(file_path: str)[source]¶ Chat message history that stores history in a local file. Parameters file_path – path of the local file to store the messages. Attributes messages Retrieve the messages from the local file Methods __init__(file_path) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in the local file add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from the local file __init__(file_path: str)[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in the local file add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from the local file Examples using FileChatMessageHistory¶ AutoGPT
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.file.FileChatMessageHistory.html
191011689acb-0
langchain.memory.chat_message_histories.xata.XataChatMessageHistory¶ class langchain.memory.chat_message_histories.xata.XataChatMessageHistory(session_id: str, db_url: str, api_key: str, branch_name: str = 'main', table_name: str = 'messages', create_table: bool = True)[source]¶ Chat message history stored in a Xata database. Initialize with Xata client. Attributes messages Methods __init__(session_id, db_url, api_key[, ...]) Initialize with Xata client. add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the Xata table add_user_message(message) Convenience method for adding a human message string to the store. clear() Delete session from Xata table. __init__(session_id: str, db_url: str, api_key: str, branch_name: str = 'main', table_name: str = 'messages', create_table: bool = True) → None[source]¶ Initialize with Xata client. add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the Xata table add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Delete session from Xata table. Examples using XataChatMessageHistory¶ Xata chat memory
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.xata.XataChatMessageHistory.html
56086ef9d707-0
langchain.memory.entity.RedisEntityStore¶ class langchain.memory.entity.RedisEntityStore[source]¶ Bases: BaseEntityStore Redis-backed Entity store. Entities get a TTL of 1 day by default, and that TTL is extended by 3 days every time the entity is read back. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param key_prefix: str = 'memory_store'¶ param recall_ttl: Optional[int] = 259200¶ param redis_client: Any = None¶ param session_id: str = 'default'¶ param ttl: Optional[int] = 86400¶ clear() → None[source]¶ Delete all entities from store. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.RedisEntityStore.html
56086ef9d707-1
deep – set to True to make a deep copy of the model Returns new model instance delete(key: str) → None[source]¶ Delete entity value from store. dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. exists(key: str) → bool[source]¶ Check if entity exists in store. classmethod from_orm(obj: Any) → Model¶ get(key: str, default: Optional[str] = None) → Optional[str][source]¶ Get entity value from store. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.RedisEntityStore.html
56086ef9d707-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ set(key: str, value: Optional[str]) → None[source]¶ Set entity value in store. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property full_key_prefix: str¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.RedisEntityStore.html
26c918adaf87-0
langchain.memory.entity.ConversationEntityMemory¶ class langchain.memory.entity.ConversationEntityMemory[source]¶ Bases: BaseChatMemory Entity extractor & summarizer memory. Extracts named entities from the recent chat history and generates summaries. With a swappable entity store, persisting entities across conversations. Defaults to an in-memory entity store, and can be swapped out for a Redis, SQLite, or other entity store. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_prefix: str = 'AI'¶ param chat_history_key: str = 'history'¶ param chat_memory: BaseChatMessageHistory [Optional]¶ param entity_cache: List[str] = []¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
26c918adaf87-1
param entity_extraction_prompt: langchain.schema.prompt_template.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
26c918adaf87-2
trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I\'m working with Person #2.\nOutput: Langchain, Person #2\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:')¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
26c918adaf87-3
param entity_store: langchain.memory.entity.BaseEntityStore [Optional]¶ param entity_summarization_prompt: langchain.schema.prompt_template.BasePromptTemplate = PromptTemplate(input_variables=['entity', 'history', 'input', 'summary'], template='You are an AI assistant helping a human keep track of facts about relevant people, places, and concepts in their life. Update the summary of the provided entity in the "Entity" section based on the last line of your conversation with the human. If you are writing the summary for the first time, return a single sentence.\nThe update should only include facts that are relayed in the last line of conversation about the provided entity, and should only contain facts about the provided entity.\n\nIf there is no new information about the provided entity or the information is not worth noting (not an important or relevant fact to remember long-term), return the existing summary unchanged.\n\nFull conversation history (for context):\n{history}\n\nEntity to summarize:\n{entity}\n\nExisting summary of {entity}:\n{summary}\n\nLast line of conversation:\nHuman: {input}\nUpdated summary:')¶ param human_prefix: str = 'Human'¶ param input_key: Optional[str] = None¶ param k: int = 3¶ param llm: langchain.schema.language_model.BaseLanguageModel [Required]¶ param output_key: Optional[str] = None¶ param return_messages: bool = False¶ clear() → None[source]¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
26c918adaf87-4
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable?
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
26c918adaf87-5
classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Returns chat history and all generated entities with summaries if available, and updates or clears the recent entity cache. New entity name can be found when calling this method, before the entity summaries are generated, so the entity cache values may be empty if no entity descriptions are generated yet. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
26c918adaf87-6
save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation history to the entity store. Generates a summary for each entity in the entity cache by prompting the model, and saves these summaries to the entity store. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property buffer: List[langchain.schema.messages.BaseMessage]¶ Access chat memory messages. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using ConversationEntityMemory¶ Entity Memory with SQLite storage
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.ConversationEntityMemory.html
8bb69abe30b1-0
langchain.memory.entity.UpstashRedisEntityStore¶ class langchain.memory.entity.UpstashRedisEntityStore[source]¶ Bases: BaseEntityStore Upstash Redis backed Entity store. Entities get a TTL of 1 day by default, and that TTL is extended by 3 days every time the entity is read back. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. clear() → None[source]¶ Delete all entities from store. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance delete(key: str) → None[source]¶ Delete entity value from store.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.UpstashRedisEntityStore.html
8bb69abe30b1-1
delete(key: str) → None[source]¶ Delete entity value from store. dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. exists(key: str) → bool[source]¶ Check if entity exists in store. classmethod from_orm(obj: Any) → Model¶ get(key: str, default: Optional[str] = None) → Optional[str][source]¶ Get entity value from store. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.UpstashRedisEntityStore.html
8bb69abe30b1-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ set(key: str, value: Optional[str]) → None[source]¶ Set entity value in store. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property full_key_prefix: str¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.UpstashRedisEntityStore.html
263c5abb87f4-0
langchain.memory.kg.ConversationKGMemory¶ class langchain.memory.kg.ConversationKGMemory[source]¶ Bases: BaseChatMemory Knowledge graph conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_prefix: str = 'AI'¶ param chat_memory: BaseChatMessageHistory [Optional]¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-1
param entity_extraction_prompt: langchain.schema.prompt_template.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-2
trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I\'m working with Person #2.\nOutput: Langchain, Person #2\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:')¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-3
param human_prefix: str = 'Human'¶ param input_key: Optional[str] = None¶ param k: int = 2¶ param kg: langchain.graphs.networkx_graph.NetworkxEntityGraph [Optional]¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-4
param knowledge_extraction_prompt: langchain.schema.prompt_template.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], template="You are a networked intelligence helping a human track knowledge triples about all relevant people, things, concepts, etc. and integrating them with your knowledge stored within your weights as well as that stored in a knowledge graph. Extract all of the knowledge triples from the last line of conversation. A knowledge triple is a clause that contains a subject, a predicate, and an object. The subject is the entity being described, the predicate is the property of the subject that is being described, and the object is the value of the property.\n\nEXAMPLE\nConversation history:\nPerson #1: Did you hear aliens landed in Area 51?\nAI: No, I didn't hear that. What do you know about Area 51?\nPerson #1: It's a secret military base in Nevada.\nAI: What do you know about Nevada?\nLast line of conversation:\nPerson #1: It's a state in the US. It's also the number 1 producer of gold in the US.\n\nOutput: (Nevada, is a, state)<|>(Nevada, is in, US)<|>(Nevada, is the number 1 producer of, gold)\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: Hello.\nAI: Hi! How are you?\nPerson #1: I'm good. How are you?\nAI: I'm good too.\nLast line of conversation:\nPerson #1: I'm going to the store.\n\nOutput: NONE\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: What do you know about Descartes?\nAI: Descartes was a French philosopher, mathematician, and scientist who lived in the 17th century.\nPerson #1: The
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-5
mathematician, and scientist who lived in the 17th century.\nPerson #1: The Descartes I'm referring to is a standup comedian and interior designer from Montreal.\nAI: Oh yes, He is a comedian and an interior designer. He has been in the industry for 30 years. His favorite food is baked bean pie.\nLast line of conversation:\nPerson #1: Oh huh. I know Descartes likes to drive antique scooters and play the mandolin.\nOutput: (Descartes, likes to drive, antique scooters)<|>(Descartes, plays, mandolin)\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:")¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-6
param llm: langchain.schema.language_model.BaseLanguageModel [Required]¶ param output_key: Optional[str] = None¶ param return_messages: bool = False¶ param summary_message_cls: Type[langchain.schema.messages.BaseMessage] = <class 'langchain.schema.messages.SystemMessage'>¶ Number of previous utterances to include in the context. clear() → None[source]¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-7
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_current_entities(input_string: str) → List[str][source]¶ get_knowledge_triplets(input_string: str) → List[KnowledgeTriple][source]¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-8
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using ConversationKGMemory¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
263c5abb87f4-9
Examples using ConversationKGMemory¶ Conversation Knowledge Graph
lang/api.python.langchain.com/en/latest/memory/langchain.memory.kg.ConversationKGMemory.html
a3040ff311db-0
langchain.memory.chat_message_histories.sql.create_message_model¶ langchain.memory.chat_message_histories.sql.create_message_model(table_name, DynamicBase)[source]¶ Create a message model for a given table name. Parameters table_name – The name of the table to use. DynamicBase – The base class to use for the model. Returns The model class.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.sql.create_message_model.html
50b4d0afae28-0
langchain.memory.simple.SimpleMemory¶ class langchain.memory.simple.SimpleMemory[source]¶ Bases: BaseMemory Simple memory for storing context or other information that shouldn’t ever change between prompts. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param memories: Dict[str, Any] = {}¶ clear() → None[source]¶ Nothing to clear, got a memory like a vault. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.simple.SimpleMemory.html
50b4d0afae28-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.simple.SimpleMemory.html
50b4d0afae28-2
The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]¶ Return key-value pairs given the text input to the chain. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Nothing should be saved or changed, my memory is set in stone. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property memory_variables: List[str]¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.simple.SimpleMemory.html
50b4d0afae28-3
property memory_variables: List[str]¶ The string keys this memory class will add to chain inputs.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.simple.SimpleMemory.html
dcaebc956620-0
langchain.memory.summary.ConversationSummaryMemory¶ class langchain.memory.summary.ConversationSummaryMemory[source]¶ Bases: BaseChatMemory, SummarizerMixin Conversation summarizer to chat memory. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_prefix: str = 'AI'¶ param buffer: str = ''¶ param chat_memory: BaseChatMessageHistory [Optional]¶ param human_prefix: str = 'Human'¶ param input_key: Optional[str] = None¶ param llm: BaseLanguageModel [Required]¶ param output_key: Optional[str] = None¶ param prompt: BasePromptTemplate = PromptTemplate(input_variables=['new_lines', 'summary'], template='Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial intelligence is a force for good?\nAI: Because artificial intelligence will help humans reach their full potential.\n\nNew summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential.\nEND OF EXAMPLE\n\nCurrent summary:\n{summary}\n\nNew lines of conversation:\n{new_lines}\n\nNew summary:')¶ param return_messages: bool = False¶ param summary_message_cls: Type[BaseMessage] = <class 'langchain.schema.messages.SystemMessage'>¶ clear() → None[source]¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.ConversationSummaryMemory.html
dcaebc956620-1
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_messages(llm: BaseLanguageModel, chat_memory: BaseChatMessageHistory, *, summarize_step: int = 2, **kwargs: Any) → ConversationSummaryMemory[source]¶ classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.ConversationSummaryMemory.html
dcaebc956620-2
Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict_new_summary(messages: List[BaseMessage], existing_summary: str) → str¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.ConversationSummaryMemory.html
dcaebc956620-3
predict_new_summary(messages: List[BaseMessage], existing_summary: str) → str¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using ConversationSummaryMemory¶ Set env var OPENAI_API_KEY or load from a .env file: Set env var OPENAI_API_KEY or load from a .env file Multiple Memory classes
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.ConversationSummaryMemory.html
56a0230f443a-0
langchain.memory.combined.CombinedMemory¶ class langchain.memory.combined.CombinedMemory[source]¶ Bases: BaseMemory Combining multiple memories’ data together. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param memories: List[langchain.schema.memory.BaseMemory] [Required]¶ For tracking all the memories that should be accessed. clear() → None[source]¶ Clear context from this session for every memory. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.combined.CombinedMemory.html
56a0230f443a-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.combined.CombinedMemory.html
56a0230f443a-2
The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]¶ Load all vars from sub-memories. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this session for every memory. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property memory_variables: List[str]¶ All the memory variables that this instance provides.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.combined.CombinedMemory.html
56a0230f443a-3
property memory_variables: List[str]¶ All the memory variables that this instance provides. Examples using CombinedMemory¶ Zep Multiple Memory classes
lang/api.python.langchain.com/en/latest/memory/langchain.memory.combined.CombinedMemory.html
40c4a6cd41a4-0
langchain.memory.buffer.ConversationStringBufferMemory¶ class langchain.memory.buffer.ConversationStringBufferMemory[source]¶ Bases: BaseMemory Buffer for storing conversation memory. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_prefix: str = 'AI'¶ Prefix to use for AI generated responses. param buffer: str = ''¶ param human_prefix: str = 'Human'¶ param input_key: Optional[str] = None¶ param output_key: Optional[str] = None¶ clear() → None[source]¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationStringBufferMemory.html
40c4a6cd41a4-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationStringBufferMemory.html
40c4a6cd41a4-2
The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property memory_variables: List[str]¶ Will always return list of memory variables. :meta private:
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationStringBufferMemory.html
c3d25425ca21-0
langchain.memory.chat_message_histories.in_memory.ChatMessageHistory¶ class langchain.memory.chat_message_histories.in_memory.ChatMessageHistory[source]¶ Bases: BaseChatMessageHistory, BaseModel In memory implementation of chat message history. Stores messages in an in memory list. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param messages: List[langchain.schema.messages.BaseMessage] [Optional]¶ A list of Messages stored in-memory. add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Add a self-created message to the store add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Remove all messages from the store classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.in_memory.ChatMessageHistory.html
c3d25425ca21-1
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.in_memory.ChatMessageHistory.html
c3d25425ca21-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using ChatMessageHistory¶ Message Memory in Agent backed by a database
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.in_memory.ChatMessageHistory.html
a71e242b31cf-0
langchain.memory.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory¶ class langchain.memory.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory(session_id: str, url: str = '', token: str = '', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶ Chat message history stored in an Upstash Redis database. Attributes key Construct the record key to use messages Retrieve the messages from Upstash Redis Methods __init__(session_id[, url, token, ...]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in Upstash Redis add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from Upstash Redis __init__(session_id: str, url: str = '', token: str = '', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in Upstash Redis add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from Upstash Redis
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory.html
185194f3a878-0
langchain.memory.utils.get_prompt_input_key¶ langchain.memory.utils.get_prompt_input_key(inputs: Dict[str, Any], memory_variables: List[str]) → str[source]¶ Get the prompt input key. Parameters inputs – Dict[str, Any] memory_variables – List[str] Returns A prompt input key.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.utils.get_prompt_input_key.html
2137820817f9-0
langchain.memory.entity.BaseEntityStore¶ class langchain.memory.entity.BaseEntityStore[source]¶ Bases: BaseModel, ABC Abstract base class for Entity store. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. abstract clear() → None[source]¶ Delete all entities from store. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance abstract delete(key: str) → None[source]¶ Delete entity value from store.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.BaseEntityStore.html
2137820817f9-1
abstract delete(key: str) → None[source]¶ Delete entity value from store. dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. abstract exists(key: str) → bool[source]¶ Check if entity exists in store. classmethod from_orm(obj: Any) → Model¶ abstract get(key: str, default: Optional[str] = None) → Optional[str][source]¶ Get entity value from store. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.BaseEntityStore.html
2137820817f9-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ abstract set(key: str, value: Optional[str]) → None[source]¶ Set entity value in store. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.BaseEntityStore.html
f3fc0ffa1d98-0
langchain.memory.entity.SQLiteEntityStore¶ class langchain.memory.entity.SQLiteEntityStore[source]¶ Bases: BaseEntityStore SQLite-backed Entity store Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param session_id: str = 'default'¶ param table_name: str = 'memory_store'¶ clear() → None[source]¶ Delete all entities from store. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance delete(key: str) → None[source]¶ Delete entity value from store.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.SQLiteEntityStore.html
f3fc0ffa1d98-1
delete(key: str) → None[source]¶ Delete entity value from store. dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. exists(key: str) → bool[source]¶ Check if entity exists in store. classmethod from_orm(obj: Any) → Model¶ get(key: str, default: Optional[str] = None) → Optional[str][source]¶ Get entity value from store. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.SQLiteEntityStore.html
f3fc0ffa1d98-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ set(key: str, value: Optional[str]) → None[source]¶ Set entity value in store. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property full_table_name: str¶ Examples using SQLiteEntityStore¶ Entity Memory with SQLite storage
lang/api.python.langchain.com/en/latest/memory/langchain.memory.entity.SQLiteEntityStore.html
13914ff4e577-0
langchain.memory.chat_message_histories.cassandra.CassandraChatMessageHistory¶ class langchain.memory.chat_message_histories.cassandra.CassandraChatMessageHistory(session_id: str, session: Session, keyspace: str, table_name: str = 'message_store', ttl_seconds: Optional[int] = None)[source]¶ Chat message history that stores history in Cassandra. Parameters session_id – arbitrary key that is used to store the messages of a single chat session. session – a Cassandra Session object (an open DB connection) keyspace – name of the keyspace to use. table_name – name of the table to use. ttl_seconds – time-to-live (seconds) for automatic expiration of stored entries. None (default) for no expiration. Attributes messages Retrieve all session messages from DB Methods __init__(session_id, session, keyspace[, ...]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Write a message to the table add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from DB __init__(session_id: str, session: Session, keyspace: str, table_name: str = 'message_store', ttl_seconds: Optional[int] = None) → None[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Write a message to the table add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.cassandra.CassandraChatMessageHistory.html
13914ff4e577-1
message – The string contents of a human message. clear() → None[source]¶ Clear session memory from DB Examples using CassandraChatMessageHistory¶ Cassandra Chat Message History Cassandra
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.cassandra.CassandraChatMessageHistory.html
b0ddb716458f-0
langchain.memory.vectorstore.VectorStoreRetrieverMemory¶ class langchain.memory.vectorstore.VectorStoreRetrieverMemory[source]¶ Bases: BaseMemory VectorStoreRetriever-backed memory. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param exclude_input_keys: Sequence[str] [Optional]¶ Input keys to exclude in addition to memory key when constructing the document param input_key: Optional[str] = None¶ Key name to index the inputs to load_memory_variables. param memory_key: str = 'history'¶ Key name to locate the memories in the result of load_memory_variables. param retriever: langchain.schema.vectorstore.VectorStoreRetriever [Required]¶ VectorStoreRetriever object to connect to. param return_docs: bool = False¶ Whether or not to return the result of querying the database directly. clear() → None[source]¶ Nothing to clear. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html
b0ddb716458f-1
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
lang/api.python.langchain.com/en/latest/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html
b0ddb716458f-2
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Union[List[Document], str]][source]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html
b0ddb716458f-3
These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property memory_variables: List[str]¶ The list of keys emitted from the load_memory_variables method. Examples using VectorStoreRetrieverMemory¶ Zep
lang/api.python.langchain.com/en/latest/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html
be7214fb8f60-0
langchain.memory.zep_memory.ZepMemory¶ class langchain.memory.zep_memory.ZepMemory[source]¶ Bases: ConversationBufferMemory Persist your chain history to the Zep MemoryStore. The number of messages returned by Zep and when the Zep server summarizes chat histories is configurable. See the Zep documentation for more details. Documentation: https://docs.getzep.com Example memory = ZepMemory( session_id=session_id, # Identifies your user or a user’s session url=ZEP_API_URL, # Your Zep server’s URL api_key=<your_api_key>, # Optional memory_key=”history”, # Ensure this matches the key used in # chain’s prompt template return_messages=True, # Does your prompt template expect a string# or a list of Messages? ) chain = LLMChain(memory=memory,…) # Configure your chain to use the ZepMemoryinstance Note To persist metadata alongside your chat history, your will need to create a custom Chain class that overrides the prep_outputs method to include the metadata in the call to self.memory.save_context. Zep is an open source platform for productionizing LLM apps. Go from a prototype built in LangChain or LlamaIndex, or a custom app, to production in minutes without rewriting code. For server installation instructions and more, see: https://docs.getzep.com/deployment/quickstart/ For more information on the zep-python package, see: https://github.com/getzep/zep-python Initialize ZepMemory. Parameters session_id (str) – Identifies your user or a user’s session url (str, optional) – Your Zep server’s URL. Defaults to “http://localhost:8000”.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.zep_memory.ZepMemory.html
be7214fb8f60-1
“http://localhost:8000”. api_key (Optional[str], optional) – Your Zep API key. Defaults to None. output_key (Optional[str], optional) – The key to use for the output message. Defaults to None. input_key (Optional[str], optional) – The key to use for the input message. Defaults to None. return_messages (bool, optional) – Does your prompt template expect a string or a list of Messages? Defaults to False i.e. return a string. human_prefix (str, optional) – The prefix to use for human messages. Defaults to “Human”. ai_prefix (str, optional) – The prefix to use for AI messages. Defaults to “AI”. memory_key (str, optional) – The key to use for the memory. Defaults to “history”. Ensure that this matches the key used in chain’s prompt template. param ai_prefix: str = 'AI'¶ param chat_memory: ZepChatMessageHistory [Required]¶ param human_prefix: str = 'Human'¶ param input_key: Optional[str] = None¶ param output_key: Optional[str] = None¶ param return_messages: bool = False¶ clear() → None¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/memory/langchain.memory.zep_memory.ZepMemory.html
be7214fb8f60-2
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable?
lang/api.python.langchain.com/en/latest/memory/langchain.memory.zep_memory.ZepMemory.html
be7214fb8f60-3
classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str], metadata: Optional[Dict[str, Any]] = None) → None[source]¶ Save context from this conversation to buffer. Parameters inputs (Dict[str, Any]) – The inputs to the chain. outputs (Dict[str, str]) – The outputs from the chain.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.zep_memory.ZepMemory.html
be7214fb8f60-4
outputs (Dict[str, str]) – The outputs from the chain. metadata (Optional[Dict[str, Any]], optional) – Any metadata to save with the context. Defaults to None Returns None classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property buffer: Any¶ String buffer of memory. property buffer_as_messages: List[langchain.schema.messages.BaseMessage]¶ Exposes the buffer as a list of messages in case return_messages is False. property buffer_as_str: str¶ Exposes the buffer as a string in case return_messages is True. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using ZepMemory¶ Zep Zep Memory
lang/api.python.langchain.com/en/latest/memory/langchain.memory.zep_memory.ZepMemory.html
5c23c5f74ab4-0
langchain.memory.chat_memory.BaseChatMemory¶ class langchain.memory.chat_memory.BaseChatMemory[source]¶ Bases: BaseMemory, ABC Abstract base class for chat memory. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param chat_memory: langchain.schema.chat_history.BaseChatMessageHistory [Optional]¶ param input_key: Optional[str] = None¶ param output_key: Optional[str] = None¶ param return_messages: bool = False¶ clear() → None[source]¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_memory.BaseChatMemory.html
5c23c5f74ab4-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_memory.BaseChatMemory.html
5c23c5f74ab4-2
The unique identifier is a list of strings that describes the path to the object. abstract load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any]¶ Return key-value pairs given the text input to the chain. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} abstract property memory_variables: List[str]¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_memory.BaseChatMemory.html
5c23c5f74ab4-3
abstract property memory_variables: List[str]¶ The string keys this memory class will add to chain inputs.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_memory.BaseChatMemory.html
b26b86fb3e4d-0
langchain.memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory¶ class langchain.memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory(session_id: str, client: ~typing.Any, collection: str, workspace: str = 'commons', messages_key: str = 'messages', sync: bool = False, message_uuid_method: ~typing.Callable[[], ~typing.Union[str, int]] = <function RocksetChatMessageHistory.<lambda>>)[source]¶ Uses Rockset to store chat messages. To use, ensure that the rockset python package installed. Example from langchain.memory.chat_message_histories import ( RocksetChatMessageHistory ) from rockset import RocksetClient history = RocksetChatMessageHistory( session_id="MySession", client=RocksetClient(), collection="langchain_demo", sync=True ) history.add_user_message("hi!") history.add_ai_message("whats up?") print(history.messages) Constructs a new RocksetChatMessageHistory. Parameters session_id (-) – The ID of the chat session client (-) – The RocksetClient object to use to query collection (-) – The name of the collection to use to store chat messages. If a collection with the given name does not exist in the workspace, it is created. workspace (-) – The workspace containing collection. Defaults to “commons” messages_key (-) – The DB column containing message history. Defaults to “messages” sync (-) – Whether to wait for messages to be added. Defaults to False. NOTE: setting this to True will slow down performance. message_uuid_method (-) – The method that generates message IDs. If set, all messages will have an id field within the
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory.html
b26b86fb3e4d-1
If set, all messages will have an id field within the additional_kwargs property. If this param is not set and sync is False, message IDs will not be created. If this param is not set and sync is True, the uuid.uuid4 method will be used to create message IDs. Attributes ADD_TIMEOUT_MS CREATE_TIMEOUT_MS SLEEP_INTERVAL_MS messages Messages in this chat history. Methods __init__(session_id, client, collection[, ...]) Constructs a new RocksetChatMessageHistory. add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Add a Message object to the history. add_user_message(message) Convenience method for adding a human message string to the store. clear() Removes all messages from the chat history __init__(session_id: str, client: ~typing.Any, collection: str, workspace: str = 'commons', messages_key: str = 'messages', sync: bool = False, message_uuid_method: ~typing.Callable[[], ~typing.Union[str, int]] = <function RocksetChatMessageHistory.<lambda>>) → None[source]¶ Constructs a new RocksetChatMessageHistory. Parameters session_id (-) – The ID of the chat session client (-) – The RocksetClient object to use to query collection (-) – The name of the collection to use to store chat messages. If a collection with the given name does not exist in the workspace, it is created. workspace (-) – The workspace containing collection. Defaults to “commons” messages_key (-) – The DB column containing message history. Defaults to “messages” sync (-) – Whether to wait for messages to be added. Defaults to False. NOTE: setting this to True will slow down performance.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory.html
b26b86fb3e4d-2
to False. NOTE: setting this to True will slow down performance. message_uuid_method (-) – The method that generates message IDs. If set, all messages will have an id field within the additional_kwargs property. If this param is not set and sync is False, message IDs will not be created. If this param is not set and sync is True, the uuid.uuid4 method will be used to create message IDs. add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Add a Message object to the history. Parameters message – A BaseMessage object to store. add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Removes all messages from the chat history Examples using RocksetChatMessageHistory¶ Rockset Chat Message History
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory.html
4cc58e6d702e-0
langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory¶ class langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory(session_id: str, *, table_name: str = 'message_store', id_field: str = 'id', session_id_field: str = 'session_id', message_field: str = 'message', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any)[source]¶ Chat message history stored in a SingleStoreDB database. Initialize with necessary components. Parameters table_name (str, optional) – Specifies the name of the table in use. Defaults to “message_store”. id_field (str, optional) – Specifies the name of the id field in the table. Defaults to “id”. session_id_field (str, optional) – Specifies the name of the session_id field in the table. Defaults to “session_id”. message_field (str, optional) – Specifies the name of the message field in the table. Defaults to “message”. pool (Following arguments pertain to the connection) – pool_size (int, optional) – Determines the number of active connections in the pool. Defaults to 5. max_overflow (int, optional) – Determines the maximum number of connections allowed beyond the pool_size. Defaults to 10. timeout (float, optional) – Specifies the maximum wait time in seconds for establishing a connection. Defaults to 30. connection (database) – host (str, optional) – Specifies the hostname, IP address, or URL for the database connection. The default scheme is “mysql”. user (str, optional) – Database username. password (str, optional) – Database password.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
4cc58e6d702e-1
password (str, optional) – Database password. port (int, optional) – Database port. Defaults to 3306 for non-HTTP connections, 80 for HTTP connections, and 443 for HTTPS connections. database (str, optional) – Database name. the (Additional optional arguments provide further customization over) – connection – pure_python (bool, optional) – Toggles the connector mode. If True, operates in pure Python mode. local_infile (bool, optional) – Allows local file uploads. charset (str, optional) – Specifies the character set for string values. ssl_key (str, optional) – Specifies the path of the file containing the SSL key. ssl_cert (str, optional) – Specifies the path of the file containing the SSL certificate. ssl_ca (str, optional) – Specifies the path of the file containing the SSL certificate authority. ssl_cipher (str, optional) – Sets the SSL cipher list. ssl_disabled (bool, optional) – Disables SSL usage. ssl_verify_cert (bool, optional) – Verifies the server’s certificate. Automatically enabled if ssl_ca is specified. ssl_verify_identity (bool, optional) – Verifies the server’s identity. conv (dict[int, Callable], optional) – A dictionary of data conversion functions. credential_type (str, optional) – Specifies the type of authentication to use: auth.PASSWORD, auth.JWT, or auth.BROWSER_SSO. autocommit (bool, optional) – Enables autocommits. results_type (str, optional) – Determines the structure of the query results: tuples, namedtuples, dicts. results_format (str, optional) – Deprecated. This option has been renamed to results_type. Examples Basic Usage: from langchain.memory.chat_message_histories import (
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
4cc58e6d702e-2
Examples Basic Usage: from langchain.memory.chat_message_histories import ( SingleStoreDBChatMessageHistory ) message_history = SingleStoreDBChatMessageHistory( session_id="my-session", host="https://user:password@127.0.0.1:3306/database" ) Advanced Usage: from langchain.memory.chat_message_histories import ( SingleStoreDBChatMessageHistory ) message_history = SingleStoreDBChatMessageHistory( session_id="my-session", host="127.0.0.1", port=3306, user="user", password="password", database="db", table_name="my_custom_table", pool_size=10, timeout=60, ) Using environment variables: from langchain.memory.chat_message_histories import ( SingleStoreDBChatMessageHistory ) os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db' message_history = SingleStoreDBChatMessageHistory("my-session") Attributes messages Retrieve the messages from SingleStoreDB Methods __init__(session_id, *[, table_name, ...]) Initialize with necessary components. add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in SingleStoreDB add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from SingleStoreDB
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
4cc58e6d702e-3
clear() Clear session memory from SingleStoreDB __init__(session_id: str, *, table_name: str = 'message_store', id_field: str = 'id', session_id_field: str = 'session_id', message_field: str = 'message', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any)[source]¶ Initialize with necessary components. Parameters table_name (str, optional) – Specifies the name of the table in use. Defaults to “message_store”. id_field (str, optional) – Specifies the name of the id field in the table. Defaults to “id”. session_id_field (str, optional) – Specifies the name of the session_id field in the table. Defaults to “session_id”. message_field (str, optional) – Specifies the name of the message field in the table. Defaults to “message”. pool (Following arguments pertain to the connection) – pool_size (int, optional) – Determines the number of active connections in the pool. Defaults to 5. max_overflow (int, optional) – Determines the maximum number of connections allowed beyond the pool_size. Defaults to 10. timeout (float, optional) – Specifies the maximum wait time in seconds for establishing a connection. Defaults to 30. connection (database) – host (str, optional) – Specifies the hostname, IP address, or URL for the database connection. The default scheme is “mysql”. user (str, optional) – Database username. password (str, optional) – Database password. port (int, optional) – Database port. Defaults to 3306 for non-HTTP connections, 80 for HTTP connections, and 443 for HTTPS connections. database (str, optional) – Database name.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
4cc58e6d702e-4
database (str, optional) – Database name. the (Additional optional arguments provide further customization over) – connection – pure_python (bool, optional) – Toggles the connector mode. If True, operates in pure Python mode. local_infile (bool, optional) – Allows local file uploads. charset (str, optional) – Specifies the character set for string values. ssl_key (str, optional) – Specifies the path of the file containing the SSL key. ssl_cert (str, optional) – Specifies the path of the file containing the SSL certificate. ssl_ca (str, optional) – Specifies the path of the file containing the SSL certificate authority. ssl_cipher (str, optional) – Sets the SSL cipher list. ssl_disabled (bool, optional) – Disables SSL usage. ssl_verify_cert (bool, optional) – Verifies the server’s certificate. Automatically enabled if ssl_ca is specified. ssl_verify_identity (bool, optional) – Verifies the server’s identity. conv (dict[int, Callable], optional) – A dictionary of data conversion functions. credential_type (str, optional) – Specifies the type of authentication to use: auth.PASSWORD, auth.JWT, or auth.BROWSER_SSO. autocommit (bool, optional) – Enables autocommits. results_type (str, optional) – Determines the structure of the query results: tuples, namedtuples, dicts. results_format (str, optional) – Deprecated. This option has been renamed to results_type. Examples Basic Usage: from langchain.memory.chat_message_histories import ( SingleStoreDBChatMessageHistory ) message_history = SingleStoreDBChatMessageHistory( session_id="my-session",
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
4cc58e6d702e-5
message_history = SingleStoreDBChatMessageHistory( session_id="my-session", host="https://user:password@127.0.0.1:3306/database" ) Advanced Usage: from langchain.memory.chat_message_histories import ( SingleStoreDBChatMessageHistory ) message_history = SingleStoreDBChatMessageHistory( session_id="my-session", host="127.0.0.1", port=3306, user="user", password="password", database="db", table_name="my_custom_table", pool_size=10, timeout=60, ) Using environment variables: from langchain.memory.chat_message_histories import ( SingleStoreDBChatMessageHistory ) os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db' message_history = SingleStoreDBChatMessageHistory("my-session") add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in SingleStoreDB add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from SingleStoreDB
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
939ac6a7ef2c-0
langchain.memory.summary.SummarizerMixin¶ class langchain.memory.summary.SummarizerMixin[source]¶ Bases: BaseModel Mixin for summarizer. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_prefix: str = 'AI'¶ param human_prefix: str = 'Human'¶ param llm: langchain.schema.language_model.BaseLanguageModel [Required]¶ param prompt: langchain.schema.prompt_template.BasePromptTemplate = PromptTemplate(input_variables=['new_lines', 'summary'], template='Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial intelligence is a force for good?\nAI: Because artificial intelligence will help humans reach their full potential.\n\nNew summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential.\nEND OF EXAMPLE\n\nCurrent summary:\n{summary}\n\nNew lines of conversation:\n{new_lines}\n\nNew summary:')¶ param summary_message_cls: Type[langchain.schema.messages.BaseMessage] = <class 'langchain.schema.messages.SystemMessage'>¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.SummarizerMixin.html
939ac6a7ef2c-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.SummarizerMixin.html
939ac6a7ef2c-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict_new_summary(messages: List[BaseMessage], existing_summary: str) → str[source]¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.summary.SummarizerMixin.html
e24e755eb19b-0
langchain.memory.chat_message_histories.streamlit.StreamlitChatMessageHistory¶ class langchain.memory.chat_message_histories.streamlit.StreamlitChatMessageHistory(key: str = 'langchain_messages')[source]¶ Chat message history that stores messages in Streamlit session state. Parameters key – The key to use in Streamlit session state for storing messages. Attributes messages Retrieve the current list of messages Methods __init__([key]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Add a message to the session memory add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory __init__(key: str = 'langchain_messages')[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Add a message to the session memory add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory Examples using StreamlitChatMessageHistory¶ Streamlit Chat Message History
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.streamlit.StreamlitChatMessageHistory.html
e102554b6154-0
langchain.memory.chat_message_histories.redis.RedisChatMessageHistory¶ class langchain.memory.chat_message_histories.redis.RedisChatMessageHistory(session_id: str, url: str = 'redis://localhost:6379/0', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶ Chat message history stored in a Redis database. Attributes key Construct the record key to use messages Retrieve the messages from Redis Methods __init__(session_id[, url, key_prefix, ttl]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in Redis add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from Redis __init__(session_id: str, url: str = 'redis://localhost:6379/0', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in Redis add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from Redis Examples using RedisChatMessageHistory¶ Redis Chat Message History Message Memory in Agent backed by a database
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.redis.RedisChatMessageHistory.html
b88a18861d6f-0
langchain.memory.chat_message_histories.mongodb.MongoDBChatMessageHistory¶ class langchain.memory.chat_message_histories.mongodb.MongoDBChatMessageHistory(connection_string: str, session_id: str, database_name: str = 'chat_history', collection_name: str = 'message_store')[source]¶ Chat message history that stores history in MongoDB. Parameters connection_string – connection string to connect to MongoDB session_id – arbitrary key that is used to store the messages of a single chat session. database_name – name of the database to use collection_name – name of the collection to use Attributes messages Retrieve the messages from MongoDB Methods __init__(connection_string, session_id[, ...]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in MongoDB add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from MongoDB __init__(connection_string: str, session_id: str, database_name: str = 'chat_history', collection_name: str = 'message_store')[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in MongoDB add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from MongoDB Examples using MongoDBChatMessageHistory¶ Mongodb Chat Message History
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.mongodb.MongoDBChatMessageHistory.html
42ff9277969c-0
langchain.memory.chat_message_histories.sql.BaseMessageConverter¶ class langchain.memory.chat_message_histories.sql.BaseMessageConverter[source]¶ The class responsible for converting BaseMessage to your SQLAlchemy model. Methods __init__() from_sql_model(sql_message) Convert a SQLAlchemy model to a BaseMessage instance. get_sql_model_class() Get the SQLAlchemy model class. to_sql_model(message, session_id) Convert a BaseMessage instance to a SQLAlchemy model. __init__()¶ abstract from_sql_model(sql_message: Any) → BaseMessage[source]¶ Convert a SQLAlchemy model to a BaseMessage instance. abstract get_sql_model_class() → Any[source]¶ Get the SQLAlchemy model class. abstract to_sql_model(message: BaseMessage, session_id: str) → Any[source]¶ Convert a BaseMessage instance to a SQLAlchemy model. Examples using BaseMessageConverter¶ SQL Chat Message History
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.sql.BaseMessageConverter.html
243cff31644a-0
langchain.memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory¶ class langchain.memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory(table_name: str, session_id: str, endpoint_url: Optional[str] = None, primary_key_name: str = 'SessionId', key: Optional[Dict[str, str]] = None, boto3_session: Optional[Session] = None, kms_key_id: Optional[str] = None)[source]¶ Chat message history that stores history in AWS DynamoDB. This class expects that a DynamoDB table exists with name table_name Parameters table_name – name of the DynamoDB table session_id – arbitrary key that is used to store the messages of a single chat session. endpoint_url – URL of the AWS endpoint to connect to. This argument is optional and useful for test purposes, like using Localstack. If you plan to use AWS cloud service, you normally don’t have to worry about setting the endpoint_url. primary_key_name – name of the primary key of the DynamoDB table. This argument is optional, defaulting to “SessionId”. key – an optional dictionary with a custom primary and secondary key. This argument is optional, but useful when using composite dynamodb keys, or isolating records based off of application details such as a user id. This may also contain global and local secondary index keys. kms_key_id – an optional AWS KMS Key ID, AWS KMS Key ARN, or AWS KMS Alias for client-side encryption Attributes messages Retrieve the messages from DynamoDB Methods __init__(table_name, session_id[, ...]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in DynamoDB add_user_message(message)
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory.html
243cff31644a-1
Append the message to the record in DynamoDB add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from DynamoDB __init__(table_name: str, session_id: str, endpoint_url: Optional[str] = None, primary_key_name: str = 'SessionId', key: Optional[Dict[str, str]] = None, boto3_session: Optional[Session] = None, kms_key_id: Optional[str] = None)[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in DynamoDB add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from DynamoDB Examples using DynamoDBChatMessageHistory¶ Dynamodb Chat Message History
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory.html
505e6217552b-0
langchain.memory.chat_message_histories.neo4j.Neo4jChatMessageHistory¶ class langchain.memory.chat_message_histories.neo4j.Neo4jChatMessageHistory(session_id: Union[str, int], url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = 'neo4j', node_label: str = 'Session', window: int = 3)[source]¶ Chat message history stored in a Neo4j database. Attributes messages Retrieve the messages from Neo4j Methods __init__(session_id[, url, username, ...]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Append the message to the record in Neo4j add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory from Neo4j __init__(session_id: Union[str, int], url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = 'neo4j', node_label: str = 'Session', window: int = 3)[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Append the message to the record in Neo4j add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory from Neo4j
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.neo4j.Neo4jChatMessageHistory.html
4958b71a0edd-0
langchain.memory.buffer.ConversationBufferMemory¶ class langchain.memory.buffer.ConversationBufferMemory[source]¶ Bases: BaseChatMemory Buffer for storing conversation memory. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_prefix: str = 'AI'¶ param chat_memory: BaseChatMessageHistory [Optional]¶ param human_prefix: str = 'Human'¶ param input_key: Optional[str] = None¶ param output_key: Optional[str] = None¶ param return_messages: bool = False¶ clear() → None¶ Clear memory contents. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html
4958b71a0edd-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html
4958b71a0edd-2
The unique identifier is a list of strings that describes the path to the object. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return history buffer. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None¶ Save context from this conversation to buffer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property buffer: Any¶ String buffer of memory. property buffer_as_messages: List[langchain.schema.messages.BaseMessage]¶ Exposes the buffer as a list of messages in case return_messages is False. property buffer_as_str: str¶ Exposes the buffer as a string in case return_messages is True. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor.
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html
4958b71a0edd-3
These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using ConversationBufferMemory¶ Gradio SceneXplain Xata chat memory Streamlit Chat Message History Dynamodb Chat Message History Chat Over Documents with Vectara Bittensor Bedrock Set env var OPENAI_API_KEY or load from a .env file: Structure answers with OpenAI functions Agents Agent Debates with Tools Message Memory in Agent backed by a database Memory in the Multi-Input Chain Memory in LLMChain Multiple Memory classes Customizing Conversational Memory Memory in Agent Shared memory across agents and tools Add Memory to OpenAI Functions Agent First we add a step to load memory Adding memory
lang/api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html
814ef8553629-0
langchain.memory.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory¶ class langchain.memory.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory(index: str, session_id: str, *, es_connection: Optional[Elasticsearch] = None, es_url: Optional[str] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_api_key: Optional[str] = None, es_password: Optional[str] = None)[source]¶ Chat message history that stores history in Elasticsearch. Parameters es_url – URL of the Elasticsearch instance to connect to. es_cloud_id – Cloud ID of the Elasticsearch instance to connect to. es_user – Username to use when connecting to Elasticsearch. es_password – Password to use when connecting to Elasticsearch. es_api_key – API key to use when connecting to Elasticsearch. es_connection – Optional pre-existing Elasticsearch connection. index – Name of the index to use. session_id – Arbitrary key that is used to store the messages of a single chat session. Attributes messages Retrieve the messages from Elasticsearch Methods __init__(index, session_id, *[, ...]) add_ai_message(message) Convenience method for adding an AI message string to the store. add_message(message) Add a message to the chat session in Elasticsearch add_user_message(message) Convenience method for adding a human message string to the store. clear() Clear session memory in Elasticsearch connect_to_elasticsearch(*[, es_url, ...]) get_user_agent()
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory.html
814ef8553629-1
connect_to_elasticsearch(*[, es_url, ...]) get_user_agent() __init__(index: str, session_id: str, *, es_connection: Optional[Elasticsearch] = None, es_url: Optional[str] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_api_key: Optional[str] = None, es_password: Optional[str] = None)[source]¶ add_ai_message(message: str) → None¶ Convenience method for adding an AI message string to the store. Parameters message – The string contents of an AI message. add_message(message: BaseMessage) → None[source]¶ Add a message to the chat session in Elasticsearch add_user_message(message: str) → None¶ Convenience method for adding a human message string to the store. Parameters message – The string contents of a human message. clear() → None[source]¶ Clear session memory in Elasticsearch static connect_to_elasticsearch(*, es_url: Optional[str] = None, cloud_id: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None) → Elasticsearch[source]¶ static get_user_agent() → str[source]¶
lang/api.python.langchain.com/en/latest/memory/langchain.memory.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory.html
087854c5a7d5-0
langchain.schema.runnable.utils.IsLocalDict¶ class langchain.schema.runnable.utils.IsLocalDict(name: str, keys: Set[str])[source]¶ Check if a name is a local dict. Methods __init__(name, keys) generic_visit(node) Called if no explicit visitor function exists for a node. visit(node) Visit a node. visit_Call(node) visit_Constant(node) visit_Subscript(node) __init__(name: str, keys: Set[str]) → None[source]¶ generic_visit(node)¶ Called if no explicit visitor function exists for a node. visit(node)¶ Visit a node. visit_Call(node: Call) → Any[source]¶ visit_Constant(node)¶ visit_Subscript(node: Subscript) → Any[source]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.IsLocalDict.html
b34114f8a8eb-0
langchain.schema.runnable.utils.get_function_first_arg_dict_keys¶ langchain.schema.runnable.utils.get_function_first_arg_dict_keys(func: Callable) → Optional[List[str]][source]¶ Get the keys of the first argument of a function if it is a dict.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.get_function_first_arg_dict_keys.html
70af02203692-0
langchain.schema.runnable.utils.gated_coro¶ async langchain.schema.runnable.utils.gated_coro(semaphore: Semaphore, coro: Coroutine) → Any[source]¶ Run a coroutine with a semaphore. :param semaphore: The semaphore to use. :param coro: The coroutine to run. Returns The result of the coroutine.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.gated_coro.html
b124fe321890-0
langchain.schema.runnable.utils.indent_lines_after_first¶ langchain.schema.runnable.utils.indent_lines_after_first(text: str, prefix: str) → str[source]¶ Indent all lines of text after the first line. Parameters text – The text to indent prefix – Used to determine the number of spaces to indent Returns The indented text Return type str
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.indent_lines_after_first.html
9646e64f2988-0
langchain.schema.runnable.base.RunnableEachBase¶ class langchain.schema.runnable.base.RunnableEachBase[source]¶ Bases: RunnableSerializable[List[Input], List[Output]] A runnable that delegates calls to another runnable with each element of the input sequence. Use only if creating a new RunnableEach subclass with different __init__ args. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output][source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEachBase.html