metadata
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
multilinguality:
- monolingual
license:
- cc-by-4.0
pretty_name: CORD
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- parsing
Dataset Card for CORD (Consolidated Receipt Dataset)
Table of Contents
Dataset Description
- Repository: https://github.com/clovaai/cord
- Paper: https://openreview.net/pdf?id=SJl3z659UH
- Leaderboard: https://paperswithcode.com/dataset/cord
Dataset Summary
[More Information Needed]
Supported Tasks and Leaderboards
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
{
"id": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"labels": datasets.Sequence(datasets.features.ClassLabel(names=_LABELS)),
"images": datasets.features.Image(),
}
Data Splits
- train (800 rows)
- validation (100 rows)
- test (100 rows)
Dataset Creation
Licensing Information
Creative Commons Attribution 4.0 International License
Citation Information
@article{park2019cord,
title={CORD: A Consolidated Receipt Dataset for Post-OCR Parsing},
author={Park, Seunghyun and Shin, Seung and Lee, Bado and Lee, Junyeop and Surh, Jaeheung and Seo, Minjoon and Lee, Hwalsuk}
booktitle={Document Intelligence Workshop at Neural Information Processing Systems}
year={2019}
}
Contributions
Thanks to @clovaai for adding this dataset.