boson-nighttime / README.md
xjh19971's picture
update image
c6da891
metadata
license: mit
size_categories:
  - 10K<n<100K
task_categories:
  - image-to-image
configs:
  - config_name: examples
    data_files: examples/*.jpg

UAV Satellite-Thermal Geo-localization Dataset

Captured using Boson thermal cameras, this dataset is specifically designed for research on nighttime UAV satellite-thermal geo-localization and satellite-thermal image translation. It has been utilized in the following works:

  1. Long-range UAV Thermal Geo-localization with Satellite Imagery
    This study focuses on long-range geo-localization by leveraging UAV thermal imagery and satellite data through image retrieval techniques.

  2. STHN: Deep Homography Estimation for UAV Thermal Geo-localization with Satellite Imagery
    The STHN model introduces deep homography estimation to enhance the accuracy of UAV thermal geo-localization using satellite imagery.

Citation

If you use the dataset in your research, please consider citing the following publication:

  1. For satellite-thermal-dataset-v1:
@INPROCEEDINGS{xiao2023stgl,
  author={Xiao, Jiuhong and Tortei, Daniel and Roura, Eloy and Loianno, Giuseppe},
  booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, 
  title={Long-Range UAV Thermal Geo-Localization with Satellite Imagery}, 
  year={2023},
  volume={},
  number={},
  pages={5820-5827},
  doi={10.1109/IROS55552.2023.10342068}}
  1. For satellite-thermal-dataset-v3:
@ARTICLE{xiao2024sthn,
  author={Xiao, Jiuhong and Zhang, Ning and Tortei, Daniel and Loianno, Giuseppe},
  journal={IEEE Robotics and Automation Letters}, 
  title={STHN: Deep Homography Estimation for UAV Thermal Geo-Localization With Satellite Imagery}, 
  year={2024},
  volume={9},
  number={10},
  pages={8754-8761},
  keywords={Estimation;Location awareness;Satellites;Satellite images;Autonomous aerial vehicles;Accuracy;Iterative methods;Deep learning for visual perception;aerial systems: applications;localization},
  doi={10.1109/LRA.2024.3448129}}

Copyright Notice for Bing Satellite Imagery

Please note that our dataset is based on Bing satellite imagery. For detailed copyright information, please refer to the Bing Maps Print Rights page.