content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/bin/env python2 # -*- encoding: utf-8 -*- # Gimp Markup Builder # author: duangsuse # date: Thu May 02 2019 CST from os import linesep from Util import stream_join class MarkupBuilder: ''' Gimp Markup SGML builder ''' ''' Indent rules: when starting new tag, write last spaces, last spaces += indent if new tag is not text tag start (inner is just text), write newline when leaving tag, last spaces -= indent ''' indented = property(useindent) def wnewline(self): ''' see use_indent''' self.marks += self.nl def windent(self): ''' see use_indent''' wrote = 0 for _ in range(0, self.last_spaces): self.marks += ' ' wrote += 1 # dummy? return wrote def cancel_indent(self): ''' cancel last indent ''' if self.indented: self.marks = self.marks[:-self.revert_last_indent_size] def do_indent(self, entering = True): ''' Write indent, increase last_spaces, saving wrote spaces and newline to revert_last_indent_size ''' if self.indented: do() def do_last_indent(self, *args, **kwargs): ''' write indenting for last block ''' self.last_spaces -= self.indent self.do_indent(*args, **kwargs) self.last_spaces += self.indent def begin(self, tag, attrs = {}): ''' Make a tag with name and attributes Attribute name, value and tag name is escaped ''' self.last_is_text = False attrst = str() tagscape = self.escape(tag) ary = list(stream_join(attrs.keys(), attrs.values())) if attrs.__class__ is dict else list(attrs) if len(attrs) != 0: for n in range(0, len(ary), 2): attrst += self.escape(str(ary[n])) attrst += '=' #print(ary) #print(n) attrst += "\"%s\"" % self.escape(str(ary[n+1])) self.marks += '<' + tagscape if len(attrs) != 0: self.marks += ' ' self.marks += attrst + '>' # always write indents for next line # makes its possible to drop last indent (text tag) self.do_indent() self.tag_stack.append(tagscape) return self def tag(self, *args, **kwargs): r''' EDSL using __close__ with syntax create nodes like: with xml.tag('span', {color: '#66ccff'}): xml % 'Q \w\ Q' ''' self.last_is_text = False return TagBuilder(self) def text(self, content): ''' append text content ''' self.last_is_text = True if self.indented: self.cancel_indent() self.marks += self.escape(content) return self #@staticmethod #def test(): # m = MarkupBuilder() # m > 'html' # m > 'head' # m > 'title' # m < 'Hello World' # m <= 2 # m > 'body' # m > 'text' # with m.tag("b"): # m < 'String' # m >= ['a', {'id': 'str'}] # m < '|sg.' # m <= 4 # return m def end(self): ''' delimites last tag ''' if not self.last_is_text: # cancel indentation #print(self.indent, self.tag_stack) self.cancel_indent() self.do_indent(False) self.marks += '</' + self.tag_stack.pop() + '>' self.do_indent(False) self.last_is_text = False # Not cared by Markup indent emitter def raw(self, raw): ''' write raw text (unescaped) ''' self.marks += raw return self def rawtag(self, rawtext): ''' append unescaped raw <> text ''' self.marks += '<' self.marks += rawtext self.marks += '>' def _escape(self, xml): ''' Escape XML string ' is replaced with &apos; " is replaced with &quot; & is replaced with &amp; < is replaced with &lt; > is replaced with &gt; ''' escapes = frozenset("'\"&<>") replacement = { '\'': 'apos', '"': 'quot', '&': 'amp', '<': 'lt', '>': 'gt' } if len(xml) < 1: return output = str() for i in range(0, len(xml)): char = xml[i] if (char in escapes): output += '&' output += replacement[char] output += ';' else: output += char return output escape = classmethod(_escape) def __str__(self): ''' M(marks)..[tag stack] ''' return 'M(' + self.marks + ')..' + str(self.tag_stack) __lt__ = text # chain __gt__ = begin # chain __add__ = raw # chain def __contains__(self, tag): ''' is tag inside enclosing tags ? ''' return tag in self.tag_stack def __ge__(self, tag_attr): ''' xml >= ['markup', {'name': 'abcs'}] ''' mark = tag_attr[0] attr = tag_attr[1] self.begin(mark, attr) def __le__(self, n = 1): ''' Leave (close) N tags ''' while n > 0: self.end() n -= 1
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 198, 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 402, 11011, 2940, 929, 35869, 198, 2, 1772, 25, 7043, 27725, 1904, 198, 2, 3128, 25, 26223, 1737, 7816, 13130, 46429, 198, 198, 6738, 28686, 1330, 3951, 538, 198, 198, 6738, 7273, 346, 1330, 4269, 62, 22179, 198, 198, 4871, 2940, 929, 32875, 25, 198, 220, 705, 7061, 402, 11011, 2940, 929, 26147, 5805, 27098, 705, 7061, 628, 220, 705, 7061, 198, 220, 1423, 298, 3173, 25, 628, 220, 618, 3599, 649, 7621, 11, 3551, 938, 9029, 11, 938, 9029, 15853, 33793, 198, 220, 611, 649, 7621, 318, 407, 2420, 7621, 923, 357, 5083, 318, 655, 2420, 828, 3551, 649, 1370, 198, 220, 618, 4305, 7621, 11, 938, 9029, 48185, 33793, 198, 220, 705, 7061, 198, 220, 773, 4714, 796, 3119, 7, 1904, 521, 298, 8, 198, 220, 825, 266, 3605, 1370, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 766, 779, 62, 521, 298, 7061, 6, 198, 220, 220, 220, 2116, 13, 14306, 15853, 2116, 13, 21283, 198, 220, 825, 2344, 298, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 766, 779, 62, 521, 298, 7061, 6, 198, 220, 220, 220, 2630, 796, 657, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 15, 11, 2116, 13, 12957, 62, 2777, 2114, 2599, 198, 220, 220, 220, 220, 220, 2116, 13, 14306, 15853, 705, 705, 198, 220, 220, 220, 220, 220, 2630, 15853, 352, 1303, 31548, 30, 198, 220, 220, 220, 1441, 2630, 198, 220, 825, 14241, 62, 521, 298, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 14241, 938, 33793, 705, 7061, 198, 220, 220, 220, 611, 2116, 13, 521, 4714, 25, 2116, 13, 14306, 796, 2116, 13, 14306, 58, 21912, 944, 13, 260, 1851, 62, 12957, 62, 521, 298, 62, 7857, 60, 198, 220, 825, 466, 62, 521, 298, 7, 944, 11, 8218, 796, 6407, 2599, 198, 220, 220, 220, 705, 7061, 19430, 33793, 11, 2620, 938, 62, 2777, 2114, 11, 8914, 2630, 9029, 290, 649, 1370, 284, 34052, 62, 12957, 62, 521, 298, 62, 7857, 705, 7061, 198, 220, 220, 220, 611, 2116, 13, 521, 4714, 25, 466, 3419, 628, 220, 825, 466, 62, 12957, 62, 521, 298, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 705, 7061, 3551, 33793, 278, 329, 938, 2512, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 2777, 2114, 48185, 2116, 13, 521, 298, 198, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2116, 13, 12957, 62, 2777, 2114, 15853, 2116, 13, 521, 298, 628, 220, 825, 2221, 7, 944, 11, 7621, 11, 708, 3808, 796, 23884, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6889, 257, 7621, 351, 1438, 290, 12608, 628, 220, 220, 220, 3460, 4163, 1438, 11, 1988, 290, 7621, 1438, 318, 13537, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 10352, 198, 220, 220, 220, 708, 81, 301, 796, 965, 3419, 198, 220, 220, 220, 7621, 6794, 796, 2116, 13, 41915, 7, 12985, 8, 628, 220, 220, 220, 257, 563, 796, 1351, 7, 5532, 62, 22179, 7, 1078, 3808, 13, 13083, 22784, 708, 3808, 13, 27160, 3419, 4008, 611, 708, 3808, 13, 834, 4871, 834, 318, 8633, 2073, 1351, 7, 1078, 3808, 8, 198, 220, 220, 220, 611, 18896, 7, 1078, 3808, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 15, 11, 18896, 7, 560, 828, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 301, 15853, 2116, 13, 41915, 7, 2536, 7, 560, 58, 77, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 301, 15853, 705, 11639, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 560, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 301, 15853, 366, 7879, 4, 82, 7879, 1, 4064, 2116, 13, 41915, 7, 2536, 7, 560, 58, 77, 10, 16, 60, 4008, 628, 220, 220, 220, 2116, 13, 14306, 15853, 705, 27, 6, 1343, 7621, 6794, 198, 220, 220, 220, 611, 18896, 7, 1078, 3808, 8, 14512, 657, 25, 2116, 13, 14306, 15853, 705, 705, 198, 220, 220, 220, 2116, 13, 14306, 15853, 708, 81, 301, 1343, 705, 29, 6, 628, 220, 220, 220, 1303, 1464, 3551, 773, 658, 329, 1306, 1627, 198, 220, 220, 220, 1303, 1838, 663, 1744, 284, 4268, 938, 33793, 357, 5239, 7621, 8, 198, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 3419, 628, 220, 220, 220, 2116, 13, 12985, 62, 25558, 13, 33295, 7, 12985, 6794, 8, 198, 220, 220, 220, 1441, 2116, 628, 220, 825, 7621, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 412, 5258, 43, 1262, 11593, 19836, 834, 351, 15582, 628, 220, 220, 220, 2251, 13760, 588, 25, 198, 220, 220, 220, 351, 35555, 13, 12985, 10786, 12626, 3256, 1391, 8043, 25, 705, 2, 2791, 535, 487, 6, 92, 2599, 198, 220, 220, 220, 220, 220, 35555, 4064, 705, 48, 3467, 86, 59, 1195, 6, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 10352, 198, 220, 220, 220, 1441, 17467, 32875, 7, 944, 8, 628, 220, 825, 2420, 7, 944, 11, 2695, 2599, 198, 220, 220, 220, 705, 7061, 24443, 2420, 2695, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 6407, 198, 220, 220, 220, 611, 2116, 13, 521, 4714, 25, 2116, 13, 66, 21130, 62, 521, 298, 3419, 198, 220, 220, 220, 2116, 13, 14306, 15853, 2116, 13, 41915, 7, 11299, 8, 198, 220, 220, 220, 1441, 2116, 628, 220, 1303, 31, 12708, 24396, 198, 220, 1303, 4299, 1332, 33529, 198, 220, 1303, 220, 285, 796, 2940, 929, 32875, 3419, 198, 220, 1303, 220, 285, 1875, 705, 6494, 6, 198, 220, 1303, 220, 285, 1875, 705, 2256, 6, 198, 220, 1303, 220, 285, 1875, 705, 7839, 6, 198, 220, 1303, 220, 285, 1279, 705, 15496, 2159, 6, 198, 220, 1303, 220, 285, 19841, 362, 198, 220, 1303, 220, 285, 1875, 705, 2618, 6, 198, 220, 1303, 220, 285, 1875, 705, 5239, 6, 198, 220, 1303, 220, 351, 285, 13, 12985, 7203, 65, 1, 2599, 198, 220, 1303, 220, 220, 220, 285, 1279, 705, 10100, 6, 198, 220, 1303, 220, 285, 18189, 37250, 64, 3256, 1391, 6, 312, 10354, 705, 2536, 6, 92, 60, 198, 220, 1303, 220, 285, 1279, 705, 91, 45213, 2637, 198, 220, 1303, 220, 285, 19841, 604, 198, 220, 1303, 220, 1441, 285, 628, 220, 825, 886, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 46728, 2737, 938, 7621, 705, 7061, 198, 220, 220, 220, 611, 407, 2116, 13, 12957, 62, 271, 62, 5239, 25, 1303, 14241, 33793, 341, 198, 220, 220, 220, 220, 220, 1303, 4798, 7, 944, 13, 521, 298, 11, 2116, 13, 12985, 62, 25558, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 66, 21130, 62, 521, 298, 3419, 198, 220, 220, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 7, 25101, 8, 628, 220, 220, 220, 2116, 13, 14306, 15853, 705, 3556, 6, 1343, 2116, 13, 12985, 62, 25558, 13, 12924, 3419, 1343, 705, 29, 6, 198, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 7, 25101, 8, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 10352, 628, 220, 1303, 1892, 19951, 416, 2940, 929, 33793, 795, 1967, 198, 220, 825, 8246, 7, 944, 11, 8246, 2599, 198, 220, 220, 220, 705, 7061, 3551, 8246, 2420, 357, 403, 3798, 5813, 8, 705, 7061, 198, 220, 220, 220, 2116, 13, 14306, 15853, 8246, 198, 220, 220, 220, 1441, 2116, 628, 220, 825, 8246, 12985, 7, 944, 11, 8246, 5239, 2599, 198, 220, 220, 220, 705, 7061, 24443, 555, 3798, 5813, 8246, 1279, 29, 2420, 705, 7061, 198, 220, 220, 220, 2116, 13, 14306, 15853, 705, 27, 6, 198, 220, 220, 220, 2116, 13, 14306, 15853, 8246, 5239, 198, 220, 220, 220, 2116, 13, 14306, 15853, 705, 29, 6, 628, 220, 825, 4808, 41915, 7, 944, 11, 35555, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 14473, 23735, 4731, 628, 220, 220, 220, 705, 318, 6928, 351, 1222, 499, 418, 26, 198, 220, 220, 220, 366, 318, 6928, 351, 1222, 421, 313, 26, 198, 220, 220, 220, 1222, 318, 6928, 351, 1222, 696, 26, 198, 220, 220, 220, 1279, 318, 6928, 351, 1222, 2528, 26, 198, 220, 220, 220, 1875, 318, 6928, 351, 1222, 13655, 26, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 32695, 796, 8400, 8247, 316, 7203, 6, 7879, 5, 27, 29, 4943, 198, 220, 220, 220, 9014, 796, 1391, 705, 59, 7061, 25, 705, 499, 418, 3256, 705, 1, 10354, 705, 421, 313, 3256, 705, 5, 10354, 705, 696, 3256, 705, 27, 10354, 705, 2528, 3256, 705, 29, 10354, 705, 13655, 6, 1782, 628, 220, 220, 220, 611, 18896, 7, 19875, 8, 1279, 352, 25, 1441, 198, 220, 220, 220, 5072, 796, 965, 3419, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 19875, 8, 2599, 198, 220, 220, 220, 220, 220, 1149, 796, 35555, 58, 72, 60, 198, 220, 220, 220, 220, 220, 611, 357, 10641, 287, 32695, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15853, 705, 5, 6, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15853, 9014, 58, 10641, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15853, 705, 26, 6, 198, 220, 220, 220, 220, 220, 2073, 25, 5072, 15853, 1149, 198, 220, 220, 220, 1441, 5072, 628, 220, 6654, 796, 1398, 24396, 28264, 41915, 8, 628, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 337, 7, 14306, 8, 492, 58, 12985, 8931, 60, 705, 7061, 198, 220, 220, 220, 1441, 705, 44, 10786, 1343, 2116, 13, 14306, 1343, 705, 8, 492, 6, 1343, 965, 7, 944, 13, 12985, 62, 25558, 8, 628, 220, 11593, 2528, 834, 796, 2420, 1303, 6333, 198, 220, 11593, 13655, 834, 796, 2221, 1303, 6333, 198, 220, 11593, 2860, 834, 796, 8246, 1303, 6333, 628, 220, 825, 11593, 3642, 1299, 834, 7, 944, 11, 7621, 2599, 198, 220, 220, 220, 705, 7061, 318, 7621, 2641, 13507, 2752, 15940, 5633, 705, 7061, 198, 220, 220, 220, 1441, 7621, 287, 2116, 13, 12985, 62, 25558, 628, 220, 825, 11593, 469, 834, 7, 944, 11, 7621, 62, 35226, 2599, 198, 220, 220, 220, 705, 7061, 35555, 18189, 37250, 4102, 929, 3256, 1391, 6, 3672, 10354, 705, 397, 6359, 6, 92, 60, 705, 7061, 198, 220, 220, 220, 1317, 796, 7621, 62, 35226, 58, 15, 60, 198, 220, 220, 220, 708, 81, 796, 7621, 62, 35226, 58, 16, 60, 198, 220, 220, 220, 2116, 13, 27471, 7, 4102, 11, 708, 81, 8, 628, 220, 825, 11593, 293, 834, 7, 944, 11, 299, 796, 352, 2599, 198, 220, 220, 220, 705, 7061, 17446, 357, 19836, 8, 399, 15940, 705, 7061, 198, 220, 220, 220, 981, 299, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 299, 48185, 352, 628 ]
2.37605
1,904
from pkg_resources import DistributionNotFound, get_distribution, parse_version try: import psycopg2 # noqa: F401 except ImportError: raise ImportError( 'No module named psycopg2. Please install either ' 'psycopg2 or psycopg2-binary package for CPython ' 'or psycopg2cffi for Pypy.' ) for package in ['psycopg2', 'psycopg2-binary', 'psycopg2cffi']: try: if get_distribution(package).parsed_version < parse_version('2.5'): raise ImportError('Minimum required version for psycopg2 is 2.5') break except DistributionNotFound: pass __version__ = get_distribution('hs-sqlalchemy-redshift').version from sqlalchemy.dialects import registry registry.register("redshift", "sqlalchemy_redshift.dialect", "RedshiftDialect") registry.register( "redshift.psycopg2", "sqlalchemy_redshift.dialect", "RedshiftDialect" )
[ 6738, 279, 10025, 62, 37540, 1330, 27484, 3673, 21077, 11, 651, 62, 17080, 3890, 11, 21136, 62, 9641, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 17331, 22163, 70, 17, 220, 1303, 645, 20402, 25, 376, 21844, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 5298, 17267, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 8265, 3706, 17331, 22163, 70, 17, 13, 4222, 2721, 2035, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13764, 22163, 70, 17, 393, 17331, 22163, 70, 17, 12, 39491, 5301, 329, 16932, 7535, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 273, 17331, 22163, 70, 17, 66, 487, 72, 329, 350, 4464, 88, 2637, 198, 220, 220, 220, 1267, 198, 198, 1640, 5301, 287, 37250, 13764, 22163, 70, 17, 3256, 705, 13764, 22163, 70, 17, 12, 39491, 3256, 705, 13764, 22163, 70, 17, 66, 487, 72, 6, 5974, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 651, 62, 17080, 3890, 7, 26495, 737, 79, 945, 276, 62, 9641, 1279, 21136, 62, 9641, 10786, 17, 13, 20, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17267, 12331, 10786, 44046, 2672, 2196, 329, 17331, 22163, 70, 17, 318, 362, 13, 20, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2845, 27484, 3673, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 834, 9641, 834, 796, 651, 62, 17080, 3890, 10786, 11994, 12, 25410, 282, 26599, 12, 445, 30846, 27691, 9641, 198, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 1330, 20478, 198, 198, 2301, 4592, 13, 30238, 7203, 445, 30846, 1600, 366, 25410, 282, 26599, 62, 445, 30846, 13, 38969, 478, 1600, 366, 7738, 30846, 24400, 478, 4943, 198, 2301, 4592, 13, 30238, 7, 198, 220, 220, 220, 366, 445, 30846, 13, 13764, 22163, 70, 17, 1600, 366, 25410, 282, 26599, 62, 445, 30846, 13, 38969, 478, 1600, 366, 7738, 30846, 24400, 478, 1, 198, 8, 198 ]
2.594203
345
# -*- coding: utf-8 -*-
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198 ]
1.714286
14
""" This module contains the top level API for managing the project/file templates. """ import json import logging import os import re from binaryornot.check import is_binary from hackedit.app import settings def create(template, dest_dir, answers): """ Creates a file/project from the specified template, at the specified directory. :param template: Template data. :param dest_dir: Destination directory where to create the file/project :param answers: Dict of answers for substitution variables """ ret_val = [] if not os.path.exists(dest_dir): os.makedirs(dest_dir) src_dir = template['path'] for root, dirs, files in os.walk(src_dir): for file in files: if file == 'template.json' or file.endswith('.pyc'): continue src, dst = get_paths(root, file, src_dir, dest_dir) dst = subsitute_vars(dst) encoding = get_file_encoding(src) try: content = open_file(src, encoding) except OSError: _logger().exception('failed to open file: %r', src) if encoding != 'binary': content = subsitute_vars(content) if file == 'btpad_btn_img_0.png': print(len(content), encoding) try: open_file(dst, encoding, to_write=content) except PermissionError: _logger().exception('failed to write file: %r', dst) else: ret_val.append(dst) assert open_file(dst, encoding) == content for directory in dirs: src, dst = get_paths(root, directory, src_dir, dest_dir) dst = subsitute_vars(dst) try: os.mkdir(dst) except PermissionError: _logger().exception('failed to create directory: %r', dst) return ret_val def get_sources(): """ Returns the template sources (directory associated with a label). """ s = settings.load() tmpl_sources = s.value('_templates/sources', '[]') tmpl_sources = json.loads(tmpl_sources) return sorted(tmpl_sources, key=lambda x: x['label']) def add_source(label, path): """ Adds a template source :param label: Name of the template source. :param path: Path of the template source. """ tmpl_sources = get_sources() tmpl_sources.append({'label': label, 'path': path}) s = settings.load() s.setValue('_templates/sources', json.dumps(tmpl_sources)) def rm_source(label): """ Removes the specified template source. :param label: Name of the template source to remove. """ tmpl_sources = get_sources() for src in tmpl_sources: if src['label'] == label: tmpl_sources.remove(src) s = settings.load() s.setValue('_templates/sources', json.dumps(tmpl_sources)) def clear_sources(): """ Clear template sources. """ s = settings.load() s.setValue('_templates/sources', json.dumps([])) def get_templates(category='', source_filter=''): """ Gets the list of templates. :param category: Template category to retrieve. - use "Project" to get project templates - use "File" to get file templates - use an empty string to retrieve them all (default). :param source: Label of the source of the templates to retrieve. Use an empty string to retrieve templates from all sources. """ def filtered_sources(): """ Filter list of sources based on the ``source`` parameter. """ tmpl_sources = get_sources() filtered = [] if source_filter: # only keep the requested template source for src in tmpl_sources: if src['label'] == source_filter: filtered.append(src) break else: filtered = tmpl_sources return filtered def get_template(tdir): """ Returns template data for the given template directory. Returns None if the template is invalid. :param tdir: Template directory to get data from. """ tmpl = None template_json = os.path.join(tdir, 'template.json') if not os.path.exists(template_json): # no template.json -> invalid template _logger().warn('"template.json" not found in template directory: %r', tdir) else: try: with open(template_json) as f: tmpl = json.loads(f.read()) except (OSError, json.JSONDecodeError): # unreadable template.json -> invalid template _logger().exception('failed to read %r', template_json) tmpl = None else: try: tmpl_cat = tmpl['category'] except KeyError: # no metadata or no category in template.json -> invalid template _logger().exception('failed to read category from template metadata, ' 'incomplete template.json?') tmpl = None else: # valid template (finally). tmpl['source'] = src if category and category != tmpl_cat: _logger().debug('rejecting template directory: %r, invalid category', tdir) tmpl = None return tmpl def listdir(directory): """ Securely list subdirectories of ``directory``. Returns an empty list of an OSError occurred. """ try: return os.listdir(directory) except OSError: return [] for src in filtered_sources(): for tdir in listdir(src['path']): tdir = os.path.join(src['path'], tdir) if os.path.isfile(tdir): continue tmpl = get_template(tdir) if tmpl: tmpl['path'] = tdir yield tmpl def get_template(source, template): """ Returns the specified template data. """ for t in get_templates(source_filter=source): if t['name'] == template: return t return None if __name__ == '__main__': clear_sources() add_source('COBOL', '/home/colin/Documents/hackedit-cobol/hackedit_cobol/templates') add_source('Python', '/home/colin/Documents/hackedit-python/hackedit_python/templates') for tmpl in get_templates(): print(json.dumps(tmpl, indent=4, sort_keys=True))
[ 37811, 198, 1212, 8265, 4909, 262, 1353, 1241, 7824, 329, 11149, 262, 1628, 14, 7753, 24019, 13, 198, 37811, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 302, 198, 198, 6738, 13934, 1211, 313, 13, 9122, 1330, 318, 62, 39491, 198, 198, 6738, 19957, 270, 13, 1324, 1330, 6460, 628, 198, 4299, 2251, 7, 28243, 11, 2244, 62, 15908, 11, 7429, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 2393, 14, 16302, 422, 262, 7368, 11055, 11, 379, 262, 7368, 8619, 13, 628, 220, 220, 220, 1058, 17143, 11055, 25, 37350, 1366, 13, 198, 220, 220, 220, 1058, 17143, 2244, 62, 15908, 25, 45657, 8619, 810, 284, 2251, 262, 2393, 14, 16302, 198, 220, 220, 220, 1058, 17143, 7429, 25, 360, 713, 286, 7429, 329, 32097, 9633, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1005, 62, 2100, 796, 17635, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 16520, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 16520, 62, 15908, 8, 198, 220, 220, 220, 12351, 62, 15908, 796, 11055, 17816, 6978, 20520, 198, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 10677, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6624, 705, 28243, 13, 17752, 6, 393, 2393, 13, 437, 2032, 342, 7, 4458, 9078, 66, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 11, 29636, 796, 651, 62, 6978, 82, 7, 15763, 11, 2393, 11, 12351, 62, 15908, 11, 2244, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 796, 6352, 3678, 62, 85, 945, 7, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 651, 62, 7753, 62, 12685, 7656, 7, 10677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 1280, 62, 7753, 7, 10677, 11, 21004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 1280, 2393, 25, 4064, 81, 3256, 12351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 14512, 705, 39491, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 6352, 3678, 62, 85, 945, 7, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6624, 705, 18347, 15636, 62, 46118, 62, 9600, 62, 15, 13, 11134, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11925, 7, 11299, 828, 21004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 62, 7753, 7, 67, 301, 11, 21004, 11, 284, 62, 13564, 28, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 3551, 2393, 25, 4064, 81, 3256, 29636, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 33295, 7, 67, 301, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 1280, 62, 7753, 7, 67, 301, 11, 21004, 8, 6624, 2695, 628, 220, 220, 220, 220, 220, 220, 220, 329, 8619, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 11, 29636, 796, 651, 62, 6978, 82, 7, 15763, 11, 8619, 11, 12351, 62, 15908, 11, 2244, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 796, 6352, 3678, 62, 85, 945, 7, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 2251, 8619, 25, 4064, 81, 3256, 29636, 8, 198, 220, 220, 220, 1441, 1005, 62, 2100, 628, 198, 4299, 651, 62, 82, 2203, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 11055, 4237, 357, 34945, 3917, 351, 257, 6167, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 264, 13, 8367, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 705, 21737, 11537, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 33918, 13, 46030, 7, 17209, 489, 62, 82, 2203, 8, 198, 220, 220, 220, 1441, 23243, 7, 17209, 489, 62, 82, 2203, 11, 1994, 28, 50033, 2124, 25, 2124, 17816, 18242, 6, 12962, 628, 198, 4299, 751, 62, 10459, 7, 18242, 11, 3108, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34333, 257, 11055, 2723, 628, 220, 220, 220, 1058, 17143, 6167, 25, 6530, 286, 262, 11055, 2723, 13, 198, 220, 220, 220, 1058, 17143, 3108, 25, 10644, 286, 262, 11055, 2723, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 651, 62, 82, 2203, 3419, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 13, 33295, 15090, 6, 18242, 10354, 6167, 11, 705, 6978, 10354, 3108, 30072, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 264, 13, 2617, 11395, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 33918, 13, 67, 8142, 7, 17209, 489, 62, 82, 2203, 4008, 628, 198, 4299, 42721, 62, 10459, 7, 18242, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3982, 5241, 262, 7368, 11055, 2723, 13, 628, 220, 220, 220, 1058, 17143, 6167, 25, 6530, 286, 262, 11055, 2723, 284, 4781, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 651, 62, 82, 2203, 3419, 198, 220, 220, 220, 329, 12351, 287, 256, 76, 489, 62, 82, 2203, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 17816, 18242, 20520, 6624, 6167, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 13, 28956, 7, 10677, 8, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 264, 13, 2617, 11395, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 33918, 13, 67, 8142, 7, 17209, 489, 62, 82, 2203, 4008, 628, 198, 4299, 1598, 62, 82, 2203, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11459, 11055, 4237, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 264, 13, 2617, 11395, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 33918, 13, 67, 8142, 7, 21737, 4008, 628, 198, 4299, 651, 62, 11498, 17041, 7, 22872, 11639, 3256, 2723, 62, 24455, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 262, 1351, 286, 24019, 13, 628, 220, 220, 220, 1058, 17143, 6536, 25, 37350, 6536, 284, 19818, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 779, 366, 16775, 1, 284, 651, 1628, 24019, 198, 220, 220, 220, 220, 220, 220, 220, 532, 779, 366, 8979, 1, 284, 651, 2393, 24019, 198, 220, 220, 220, 220, 220, 220, 220, 532, 779, 281, 6565, 4731, 284, 19818, 606, 477, 357, 12286, 737, 628, 220, 220, 220, 1058, 17143, 2723, 25, 36052, 286, 262, 2723, 286, 262, 24019, 284, 19818, 13, 5765, 281, 6565, 4731, 284, 19818, 198, 220, 220, 220, 220, 220, 220, 220, 24019, 422, 477, 4237, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 29083, 62, 82, 2203, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25853, 1351, 286, 4237, 1912, 319, 262, 7559, 10459, 15506, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 651, 62, 82, 2203, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 691, 1394, 262, 9167, 11055, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 12351, 287, 256, 76, 489, 62, 82, 2203, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 17816, 18242, 20520, 6624, 2723, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29083, 13, 33295, 7, 10677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29083, 796, 256, 76, 489, 62, 82, 2203, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29083, 628, 220, 220, 220, 825, 651, 62, 28243, 7, 8671, 343, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 11055, 1366, 329, 262, 1813, 11055, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 6045, 611, 262, 11055, 318, 12515, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 256, 15908, 25, 37350, 8619, 284, 651, 1366, 422, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 17752, 796, 28686, 13, 6978, 13, 22179, 7, 8671, 343, 11, 705, 28243, 13, 17752, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 28243, 62, 17752, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 11055, 13, 17752, 4613, 12515, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 40539, 10786, 1, 28243, 13, 17752, 1, 407, 1043, 287, 11055, 8619, 25, 4064, 81, 3256, 256, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 28243, 62, 17752, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 33918, 13, 46030, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 2640, 12331, 11, 33918, 13, 40386, 10707, 1098, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 555, 46155, 11055, 13, 17752, 4613, 12515, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 1100, 4064, 81, 3256, 11055, 62, 17752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 62, 9246, 796, 256, 76, 489, 17816, 22872, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 20150, 393, 645, 6536, 287, 11055, 13, 17752, 4613, 12515, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 1100, 6536, 422, 11055, 20150, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 259, 20751, 11055, 13, 17752, 8348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4938, 11055, 357, 69, 3289, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 17816, 10459, 20520, 796, 12351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6536, 290, 6536, 14512, 256, 76, 489, 62, 9246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 24442, 10786, 260, 752, 278, 11055, 8619, 25, 4064, 81, 11, 12515, 6536, 3256, 256, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 76, 489, 628, 220, 220, 220, 825, 1351, 15908, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26707, 306, 1351, 850, 12942, 1749, 286, 7559, 34945, 15506, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 281, 6565, 1351, 286, 281, 440, 5188, 81, 1472, 5091, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 4868, 15908, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 628, 220, 220, 220, 329, 12351, 287, 29083, 62, 82, 2203, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 15908, 287, 1351, 15908, 7, 10677, 17816, 6978, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 10677, 17816, 6978, 6, 4357, 256, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 8671, 343, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 651, 62, 28243, 7, 8671, 343, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 76, 489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 17816, 6978, 20520, 796, 256, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 256, 76, 489, 628, 198, 4299, 651, 62, 28243, 7, 10459, 11, 11055, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 7368, 11055, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 256, 287, 651, 62, 11498, 17041, 7, 10459, 62, 24455, 28, 10459, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 17816, 3672, 20520, 6624, 11055, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 198, 220, 220, 220, 1441, 6045, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1598, 62, 82, 2203, 3419, 198, 220, 220, 220, 751, 62, 10459, 10786, 8220, 33, 3535, 3256, 220, 31051, 11195, 14, 4033, 259, 14, 38354, 14, 71, 6021, 270, 12, 66, 672, 349, 14, 71, 6021, 270, 62, 66, 672, 349, 14, 11498, 17041, 11537, 198, 220, 220, 220, 751, 62, 10459, 10786, 37906, 3256, 31051, 11195, 14, 4033, 259, 14, 38354, 14, 71, 6021, 270, 12, 29412, 14, 71, 6021, 270, 62, 29412, 14, 11498, 17041, 11537, 198, 220, 220, 220, 329, 256, 76, 489, 287, 651, 62, 11498, 17041, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 17209, 489, 11, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 4008, 198 ]
2.184029
3,043
""" Convert video format x to MP4/H.264. """ import os import sys import logging from .videometainfo import VideoMetaInfo from .utils import sizeof_fmt, time_fmt, find_files, check_dependencies, call, ffmpeg logger = logging.getLogger(__name__) class VideoToMP4: """To Mp4""" SUPPORTED_EXTENSIONS = ".wmv, .avi, .mkv, .mov, .flv" RULES = { ".wmv": "-c:v libx264 -crf 19 ", ".avi": "-vf yadif=1 -c:v h264_nvenc -preset slow -tune film -crf 17", ".mkv": "-c copy", ".mov": "-vcodec h264 -acodec aac -strict -2 -crf 19 ", ".flv": " -r 20 ", } def process(self, video_file: str): """Convert video files to MP4 container format.""" name = os.path.splitext(video_file)[0] ext = os.path.splitext(video_file)[1] new_name = f"{name}.mp4" if os.path.exists(new_name): logger.info(f"Skipping file {new_name} already exists!") elif ext not in VideoToMP4.RULES: logger.error(f"Skipping unsupported type {ext}!") else: print(f'Convert {ext} to MP4 {new_name} ... ') meta_info = VideoMetaInfo(video_file) rule = VideoToMP4.RULES[ext] flags = "-movflags +faststart -pix_fmt yuv420p" ffmpeg( f'-i "{video_file}" {flags} {rule} -metadata date="{meta_info.original_date}" "{new_name}"' )
[ 37811, 198, 3103, 1851, 2008, 5794, 2124, 284, 4904, 19, 14, 39, 13, 18897, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 18931, 198, 198, 6738, 764, 85, 485, 908, 391, 6513, 1330, 7623, 48526, 12360, 198, 6738, 764, 26791, 1330, 39364, 62, 69, 16762, 11, 640, 62, 69, 16762, 11, 1064, 62, 16624, 11, 2198, 62, 45841, 3976, 11, 869, 11, 31246, 43913, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 7623, 2514, 7378, 19, 25, 198, 220, 220, 220, 37227, 2514, 337, 79, 19, 37811, 198, 220, 220, 220, 43333, 1961, 62, 13918, 16938, 11053, 796, 27071, 26377, 85, 11, 764, 15820, 11, 764, 28015, 85, 11, 764, 76, 709, 11, 764, 2704, 85, 1, 198, 220, 220, 220, 371, 6239, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 26377, 85, 1298, 27444, 66, 25, 85, 9195, 87, 18897, 532, 6098, 69, 678, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 15820, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 85, 69, 331, 324, 361, 28, 16, 532, 66, 25, 85, 289, 18897, 62, 77, 574, 66, 532, 18302, 316, 3105, 532, 83, 1726, 2646, 532, 6098, 69, 1596, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 28015, 85, 1298, 27444, 66, 4866, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 76, 709, 1298, 27444, 85, 19815, 721, 289, 18897, 532, 330, 375, 721, 257, 330, 532, 301, 2012, 532, 17, 532, 6098, 69, 678, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 2704, 85, 1298, 366, 532, 81, 1160, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 1429, 7, 944, 11, 2008, 62, 7753, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 2008, 3696, 284, 4904, 19, 9290, 5794, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 15588, 62, 7753, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 15588, 62, 7753, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3672, 796, 277, 1, 90, 3672, 27422, 3149, 19, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 3605, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 50, 4106, 2105, 2393, 1391, 3605, 62, 3672, 92, 1541, 7160, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1070, 407, 287, 7623, 2514, 7378, 19, 13, 49, 6239, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 50, 4106, 2105, 24222, 2099, 1391, 2302, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 3103, 1851, 1391, 2302, 92, 284, 4904, 19, 1391, 3605, 62, 3672, 92, 2644, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 10951, 796, 7623, 48526, 12360, 7, 15588, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3896, 796, 7623, 2514, 7378, 19, 13, 49, 6239, 1546, 58, 2302, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9701, 796, 27444, 76, 709, 33152, 1343, 7217, 9688, 532, 79, 844, 62, 69, 16762, 331, 14795, 27211, 79, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31246, 43913, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 29001, 72, 45144, 15588, 62, 7753, 36786, 1391, 33152, 92, 1391, 25135, 92, 532, 38993, 3128, 2625, 90, 28961, 62, 10951, 13, 14986, 62, 4475, 36786, 45144, 3605, 62, 3672, 92, 30543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.002782
719
from setuptools import setup setup( name='parasol', dependency_links=[ ], install_requires=[ ] )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 1845, 292, 349, 3256, 198, 220, 220, 220, 20203, 62, 28751, 41888, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 2361, 198, 8, 198 ]
2.4375
48
# Generated by Django 3.2.8 on 2021-11-02 12:46 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 23, 319, 33448, 12, 1157, 12, 2999, 1105, 25, 3510, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import csv import io import json import logging import os import warnings from collections import defaultdict from ..utils.exceptions import OasisException from ..utils.log import oasis_log from .files import GENERAL_SETTINGS_FILE, GUL_SUMMARIES_FILE, IL_SUMMARIES_FILE, MODEL_SETTINGS_FILE def _get_summaries(summary_file): """ Get a list representation of a summary file. """ summaries_dict = defaultdict(lambda: {'leccalc': {}}) with io.open(summary_file, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: id = int(row[0]) if row[1].startswith('leccalc'): summaries_dict[id]['leccalc'][row[1]] = row[2].lower() == 'true' else: summaries_dict[id][row[1]] = row[2].lower() == 'true' summaries = list() for id in sorted(summaries_dict): summaries_dict[id]['id'] = id summaries.append(summaries_dict[id]) return summaries @oasis_log def create_analysis_settings_json(directory): """ Generate an analysis settings JSON from a set of CSV files in a specified directory. Args: ``directory`` (string): the directory containing the CSV files. Returns: The analysis settings JSON. """ if not os.path.exists(directory): error_message = "Directory does not exist: {}".format(directory) logging.getLogger().error(error_message) raise OasisException(error_message) general_settings_file = os.path.join(directory, GENERAL_SETTINGS_FILE) model_settings_file = os.path.join(directory, MODEL_SETTINGS_FILE) gul_summaries_file = os.path.join(directory, GUL_SUMMARIES_FILE) il_summaries_file = os.path.join(directory, IL_SUMMARIES_FILE) for file in [general_settings_file, model_settings_file, gul_summaries_file, il_summaries_file]: if not os.path.exists(file): error_message = "File does not exist: {}".format(directory) logging.getLogger().error(error_message) raise OasisException(error_message) general_settings = dict() with io.open(general_settings_file, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: general_settings[row[0]] = eval("{}('{}')".format(row[2], row[1])) model_settings = dict() with io.open(model_settings_file, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: model_settings[row[0]] = eval("{}('{}')".format(row[2], row[1])) gul_summaries = _get_summaries(gul_summaries_file) il_summaries = _get_summaries(il_summaries_file) analysis_settings = general_settings analysis_settings['model_settings'] = model_settings analysis_settings['gul_summaries'] = gul_summaries analysis_settings['il_summaries'] = il_summaries output_json = json.dumps(analysis_settings) logging.getLogger().info("Analysis settings json: {}".format(output_json)) return output_json def read_analysis_settings(analysis_settings_fp, il_files_exist=False, ri_files_exist=False): """Read the analysis settings file""" # Load analysis_settings file try: # Load as a json with io.open(analysis_settings_fp, 'r', encoding='utf-8') as f: analysis_settings = json.load(f) # Extract the analysis_settings part within the json if analysis_settings.get('analysis_settings'): analysis_settings = analysis_settings['analysis_settings'] except (IOError, TypeError, ValueError): raise OasisException('Invalid analysis settings file or file path: {}.'.format( analysis_settings_fp)) # Reset il_output if the files are not there if not il_files_exist or 'il_output' not in analysis_settings: # No insured loss output analysis_settings['il_output'] = False analysis_settings['il_summaries'] = [] # Same for ri_output if not ri_files_exist or 'ri_output' not in analysis_settings: # No reinsured loss output analysis_settings['ri_output'] = False analysis_settings['ri_summaries'] = [] # If we want ri_output, we will need il_output, which needs il_files if analysis_settings['ri_output'] and not analysis_settings['il_output']: if not il_files_exist: warnings.warn("ri_output selected, but il files not found") analysis_settings['ri_output'] = False analysis_settings['ri_summaries'] = [] else: analysis_settings['il_output'] = True # guard - Check if at least one output type is selected if not any([ analysis_settings['gul_output'] if 'gul_output' in analysis_settings else False, analysis_settings['il_output'] if 'il_output' in analysis_settings else False, analysis_settings['ri_output'] if 'ri_output' in analysis_settings else False, ]): raise OasisException( 'No valid output settings in: {}'.format(analysis_settings_fp)) return analysis_settings
[ 11748, 269, 21370, 198, 11748, 33245, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 14601, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 6738, 11485, 26791, 13, 1069, 11755, 1330, 440, 17765, 16922, 198, 6738, 11485, 26791, 13, 6404, 1330, 267, 17765, 62, 6404, 198, 6738, 764, 16624, 1330, 41877, 62, 28480, 51, 20754, 62, 25664, 11, 402, 6239, 62, 50, 5883, 40569, 11015, 62, 25664, 11, 14639, 62, 50, 5883, 40569, 11015, 62, 25664, 11, 19164, 3698, 62, 28480, 51, 20754, 62, 25664, 628, 198, 4299, 4808, 1136, 62, 82, 13929, 3166, 7, 49736, 62, 7753, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 1351, 10552, 286, 257, 10638, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30114, 3166, 62, 11600, 796, 4277, 11600, 7, 50033, 25, 1391, 6, 293, 535, 282, 66, 10354, 1391, 11709, 8, 628, 220, 220, 220, 351, 33245, 13, 9654, 7, 49736, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 493, 7, 808, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5752, 58, 16, 4083, 9688, 2032, 342, 10786, 293, 535, 282, 66, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 62, 11600, 58, 312, 7131, 6, 293, 535, 282, 66, 6, 7131, 808, 58, 16, 11907, 796, 5752, 58, 17, 4083, 21037, 3419, 6624, 705, 7942, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 62, 11600, 58, 312, 7131, 808, 58, 16, 11907, 796, 5752, 58, 17, 4083, 21037, 3419, 6624, 705, 7942, 6, 628, 220, 220, 220, 30114, 3166, 796, 1351, 3419, 198, 220, 220, 220, 329, 4686, 287, 23243, 7, 82, 13929, 3166, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 62, 11600, 58, 312, 7131, 6, 312, 20520, 796, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 13, 33295, 7, 82, 13929, 3166, 62, 11600, 58, 312, 12962, 628, 220, 220, 220, 1441, 30114, 3166, 628, 198, 31, 78, 17765, 62, 6404, 198, 4299, 2251, 62, 20930, 62, 33692, 62, 17752, 7, 34945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 281, 3781, 6460, 19449, 422, 257, 900, 286, 198, 220, 220, 220, 44189, 3696, 287, 257, 7368, 8619, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 34945, 15506, 357, 8841, 2599, 262, 8619, 7268, 262, 44189, 3696, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3781, 6460, 19449, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 796, 366, 43055, 857, 407, 2152, 25, 23884, 1911, 18982, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 18224, 7, 18224, 62, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 7, 18224, 62, 20500, 8, 628, 220, 220, 220, 2276, 62, 33692, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 41877, 62, 28480, 51, 20754, 62, 25664, 8, 198, 220, 220, 220, 2746, 62, 33692, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 19164, 3698, 62, 28480, 51, 20754, 62, 25664, 8, 198, 220, 220, 220, 47161, 62, 82, 13929, 3166, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 402, 6239, 62, 50, 5883, 40569, 11015, 62, 25664, 8, 198, 220, 220, 220, 4229, 62, 82, 13929, 3166, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 14639, 62, 50, 5883, 40569, 11015, 62, 25664, 8, 628, 220, 220, 220, 329, 2393, 287, 685, 24622, 62, 33692, 62, 7753, 11, 2746, 62, 33692, 62, 7753, 11, 47161, 62, 82, 13929, 3166, 62, 7753, 11, 4229, 62, 82, 13929, 3166, 62, 7753, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 796, 366, 8979, 857, 407, 2152, 25, 23884, 1911, 18982, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 18224, 7, 18224, 62, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 7, 18224, 62, 20500, 8, 628, 220, 220, 220, 2276, 62, 33692, 796, 8633, 3419, 198, 220, 220, 220, 351, 33245, 13, 9654, 7, 24622, 62, 33692, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2276, 62, 33692, 58, 808, 58, 15, 11907, 796, 5418, 7203, 90, 92, 10786, 90, 92, 11537, 1911, 18982, 7, 808, 58, 17, 4357, 5752, 58, 16, 60, 4008, 628, 220, 220, 220, 2746, 62, 33692, 796, 8633, 3419, 198, 220, 220, 220, 351, 33245, 13, 9654, 7, 19849, 62, 33692, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 33692, 58, 808, 58, 15, 11907, 796, 5418, 7203, 90, 92, 10786, 90, 92, 11537, 1911, 18982, 7, 808, 58, 17, 4357, 5752, 58, 16, 60, 4008, 628, 220, 220, 220, 47161, 62, 82, 13929, 3166, 796, 4808, 1136, 62, 82, 13929, 3166, 7, 70, 377, 62, 82, 13929, 3166, 62, 7753, 8, 198, 220, 220, 220, 4229, 62, 82, 13929, 3166, 796, 4808, 1136, 62, 82, 13929, 3166, 7, 346, 62, 82, 13929, 3166, 62, 7753, 8, 628, 220, 220, 220, 3781, 62, 33692, 796, 2276, 62, 33692, 198, 220, 220, 220, 3781, 62, 33692, 17816, 19849, 62, 33692, 20520, 796, 2746, 62, 33692, 198, 220, 220, 220, 3781, 62, 33692, 17816, 70, 377, 62, 82, 13929, 3166, 20520, 796, 47161, 62, 82, 13929, 3166, 198, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 82, 13929, 3166, 20520, 796, 4229, 62, 82, 13929, 3166, 198, 220, 220, 220, 5072, 62, 17752, 796, 33918, 13, 67, 8142, 7, 20930, 62, 33692, 8, 198, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 10951, 7203, 32750, 6460, 33918, 25, 23884, 1911, 18982, 7, 22915, 62, 17752, 4008, 628, 220, 220, 220, 1441, 5072, 62, 17752, 628, 198, 4299, 1100, 62, 20930, 62, 33692, 7, 20930, 62, 33692, 62, 46428, 11, 4229, 62, 16624, 62, 38476, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 72, 62, 16624, 62, 38476, 28, 25101, 2599, 198, 220, 220, 220, 37227, 5569, 262, 3781, 6460, 2393, 37811, 628, 198, 220, 220, 220, 1303, 8778, 3781, 62, 33692, 2393, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 355, 257, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 20930, 62, 33692, 62, 46428, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 796, 33918, 13, 2220, 7, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29677, 262, 3781, 62, 33692, 636, 1626, 262, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3781, 62, 33692, 13, 1136, 10786, 20930, 62, 33692, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 796, 3781, 62, 33692, 17816, 20930, 62, 33692, 20520, 628, 220, 220, 220, 2845, 357, 9399, 12331, 11, 5994, 12331, 11, 11052, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 10786, 44651, 3781, 6460, 2393, 393, 2393, 3108, 25, 23884, 2637, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 62, 46428, 4008, 628, 220, 220, 220, 1303, 30027, 4229, 62, 22915, 611, 262, 3696, 389, 407, 612, 198, 220, 220, 220, 611, 407, 4229, 62, 16624, 62, 38476, 393, 705, 346, 62, 22915, 6, 407, 287, 3781, 62, 33692, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 31977, 2994, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 22915, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 82, 13929, 3166, 20520, 796, 17635, 628, 220, 220, 220, 1303, 16766, 329, 374, 72, 62, 22915, 198, 220, 220, 220, 611, 407, 374, 72, 62, 16624, 62, 38476, 393, 705, 380, 62, 22915, 6, 407, 287, 3781, 62, 33692, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 302, 28409, 2994, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 82, 13929, 3166, 20520, 796, 17635, 628, 220, 220, 220, 1303, 1002, 356, 765, 374, 72, 62, 22915, 11, 356, 481, 761, 4229, 62, 22915, 11, 543, 2476, 4229, 62, 16624, 198, 220, 220, 220, 611, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 290, 407, 3781, 62, 33692, 17816, 346, 62, 22915, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4229, 62, 16624, 62, 38476, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 380, 62, 22915, 6163, 11, 475, 4229, 3696, 407, 1043, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 82, 13929, 3166, 20520, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 22915, 20520, 796, 6407, 628, 220, 220, 220, 1303, 4860, 532, 6822, 611, 379, 1551, 530, 5072, 2099, 318, 6163, 198, 220, 220, 220, 611, 407, 597, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 70, 377, 62, 22915, 20520, 611, 705, 70, 377, 62, 22915, 6, 287, 3781, 62, 33692, 2073, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 22915, 20520, 611, 705, 346, 62, 22915, 6, 287, 3781, 62, 33692, 2073, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 611, 705, 380, 62, 22915, 6, 287, 3781, 62, 33692, 2073, 10352, 11, 198, 220, 220, 220, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 4938, 5072, 6460, 287, 25, 23884, 4458, 18982, 7, 20930, 62, 33692, 62, 46428, 4008, 628, 220, 220, 220, 1441, 3781, 62, 33692, 198 ]
2.540594
2,020
#!/usr/bin/env python #-------------------------------------------------------------------------------- #Changes the sky coordinates (x,y,z) to the disk coordinates (x_d,y_d,z_d) #The x axis is the rotation axis #-------------------------------------------------------------------------------- #Radiative transfer equation #-------------------------------------------------------------------------------- #Optical depth #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #Black body radiation #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #Lee las tablas de opacidad DSHARP #Load opacities with np.load('default_opacities_smooth.npz') as d: a_w = d['a'] gsca_w = d['g'] lam_w = d['lam'] k_abs_w = d['k_abs'] k_sca_w = d['k_sca'] lam_avgs = wl # We split the opacities within the range of frequency to make the calculations faster k_abs_w = k_abs_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w),:] k_sca_w = k_sca_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w),:] k_sca_w = k_sca_w*(1. - gsca_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w),:]) lam_w = lam_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w)] opac_grid = opacity.size_average_opacity(lam_avgs, a_w, lam_w, k_abs_w.T, k_sca_w.T, q=3.5, plot=True) function_ext = interpolate.interp1d(a_w, opac_grid['ka'][:]+opac_grid['ks'][:],kind='cubic') function_alb = interpolate.interp1d(a_w, opac_grid['ks'][:]/(opac_grid['ka'][:]+opac_grid['ks'][:]),kind='cubic') if not scattering: function_alb = interpolate.interp1d(a_w, np.zeros((np.shape(opac_grid['ks'][:]))),kind='cubic')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 10097, 1783, 198, 2, 29238, 262, 6766, 22715, 357, 87, 11, 88, 11, 89, 8, 284, 262, 11898, 22715, 357, 87, 62, 67, 11, 88, 62, 67, 11, 89, 62, 67, 8, 198, 2, 464, 2124, 16488, 318, 262, 13179, 16488, 198, 198, 2, 10097, 1783, 198, 2, 49, 9189, 876, 4351, 16022, 198, 198, 2, 10097, 1783, 198, 2, 27871, 605, 6795, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 2, 9915, 1767, 11881, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 2, 24338, 39990, 7400, 21921, 390, 1034, 330, 32482, 360, 9693, 36035, 198, 2, 8912, 1034, 330, 871, 198, 4480, 45941, 13, 2220, 10786, 12286, 62, 404, 330, 871, 62, 5796, 5226, 13, 37659, 89, 11537, 355, 288, 25, 198, 220, 220, 220, 257, 62, 86, 220, 220, 220, 220, 796, 288, 17816, 64, 20520, 198, 220, 220, 220, 308, 1416, 64, 62, 86, 220, 796, 288, 17816, 70, 20520, 198, 220, 220, 220, 30592, 62, 86, 220, 220, 796, 288, 17816, 2543, 20520, 198, 220, 220, 220, 479, 62, 8937, 62, 86, 796, 288, 17816, 74, 62, 8937, 20520, 198, 220, 220, 220, 479, 62, 1416, 64, 62, 86, 796, 288, 17816, 74, 62, 1416, 64, 20520, 198, 198, 2543, 62, 615, 14542, 796, 266, 75, 198, 2, 775, 6626, 262, 1034, 330, 871, 1626, 262, 2837, 286, 8373, 284, 787, 262, 16765, 5443, 198, 74, 62, 8937, 62, 86, 796, 479, 62, 8937, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 828, 47715, 198, 74, 62, 1416, 64, 62, 86, 796, 479, 62, 1416, 64, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 828, 47715, 198, 74, 62, 1416, 64, 62, 86, 796, 479, 62, 1416, 64, 62, 86, 9, 7, 16, 13, 532, 220, 308, 1416, 64, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 828, 25, 12962, 198, 2543, 62, 86, 796, 30592, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 15437, 198, 198, 404, 330, 62, 25928, 796, 45912, 13, 7857, 62, 23913, 62, 404, 4355, 7, 2543, 62, 615, 14542, 11, 257, 62, 86, 11, 30592, 62, 86, 11, 479, 62, 8937, 62, 86, 13, 51, 11, 479, 62, 1416, 64, 62, 86, 13, 51, 11, 10662, 28, 18, 13, 20, 11, 7110, 28, 17821, 8, 628, 198, 8818, 62, 2302, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 64, 62, 86, 11, 1034, 330, 62, 25928, 17816, 4914, 6, 7131, 47715, 10, 404, 330, 62, 25928, 17816, 591, 6, 7131, 25, 4357, 11031, 11639, 66, 549, 291, 11537, 198, 8818, 62, 282, 65, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 64, 62, 86, 11, 1034, 330, 62, 25928, 17816, 591, 6, 7131, 47715, 29006, 404, 330, 62, 25928, 17816, 4914, 6, 7131, 47715, 10, 404, 330, 62, 25928, 17816, 591, 6, 7131, 25, 46570, 11031, 11639, 66, 549, 291, 11537, 198, 361, 407, 45765, 25, 198, 220, 220, 220, 2163, 62, 282, 65, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 64, 62, 86, 11, 45941, 13, 9107, 418, 19510, 37659, 13, 43358, 7, 404, 330, 62, 25928, 17816, 591, 6, 7131, 47715, 4008, 828, 11031, 11639, 66, 549, 291, 11537, 198 ]
3.043411
645
# -*- coding: utf-8 -*- """ Created on Wed Jun 16 18:06:05 2021 @author: jhask """ import csv import pandas as pd import numpy as np import re import scipy.io as sio import os # Map MCM names to TUV labels j_vals_dict= dict({ 'O3 -> O2 + O(1D)':'J1', 'O3 -> O2 + O(3P)':'J2', 'H2O2 -> 2 OH':'J3', 'NO2 -> NO + O(3P)':'J4', 'NO3 -> NO + O2':'J5', 'NO3 -> NO2 + O(3P)':'J6', 'HNO2 -> OH + NO':'J7', 'HNO3 -> OH + NO2':'J8', 'CH2O -> H + HCO':'J11', 'CH2O -> H2 + CO':'J12', 'CH3CHO -> CH3 + HCO':'J13', 'C2H5CHO -> C2H5 + HCO':'J14', 'CH2=C(CH3)CHO -> Products':'J18', 'CH3COCH3 -> CH3CO + CH3':'J21', 'CH3COCH2CH3 -> CH3CO + CH2CH3':'J22', 'CH3COCH=CH2 -> Products':'J23', 'CHOCHO -> H2 + 2CO':'J31', 'CHOCHO -> CH2O + CO':'J32', 'CHOCHO -> HCO + HCO':'J33', 'CH3COCHO -> CH3CO + HCO':'J34', 'CH3COCOCH3 -> Products':'J35', 'CH3OOH -> CH3O + OH':'J41', 'CH3ONO2 -> CH3O + NO2':'J51', 'C2H5ONO2 -> C2H5O + NO2':'J52', 'n-C3H7ONO2 -> C3H7O + NO2':'J53', 'CH3CHONO2CH3 -> CH3CHOCH3 + NO2':'J54', 'C(CH3)3(ONO2) -> C(CH3)3(O.) + NO2':'J55', 'CH3COCH2(ONO2) -> CH3COCH2(O.) + NO2':'J56', 'CH2(OH)COCH3 -> CH3CO + CH2(OH)':'Jn10', 'CH2=CHCHO -> Products':'Jn11', 'CH3CO(OONO2) -> CH3CO(OO) + NO2':'Jn14', 'CH3CO(OONO2) -> CH3CO(O) + NO3':'Jn15', 'CH3(OONO2) -> CH3(OO) + NO2':'Jn16', 'CH3(OONO2) -> CH3(OO) + NO2':'Jn17', 'N2O5 -> NO3 + NO2':'Jn19', 'N2O5 -> NO3 + NO + O(3P)':'Jn20', 'HNO4 -> HO2 + NO2':'Jn21'}) #TUV output file. file= 'C:/Users/jhask/OneDrive/Documents/MATLAB/F0AM/Setups/SOAS_RCIM/foam_6_29_out.txt' with open(file, "r",errors="ignore") as f: # read line by line. reader = csv.reader(f, delimiter="\t") # Initialize vars we fill in reading the file. ln_num = 0; map_cols=dict({}) in_species_list=False; pass_go=False for row in reader: line = " ".join(row) # read line by line. hdrs= [key for key in list(j_vals_dict.keys()) if key in line] if len(hdrs) > 0 : headers= re.search(r"[\d]*[\=\w]", line) print(line, hdrs, j_vals_dict[ hdrs[:][0]]) if headers: map_cols[headers.group()]=j_vals_dict[ hdrs[:][0]] if (pass_go is True) and ('------' not in line ): # Append the j-values to the dataframe at this point in time. splt= [float(item) for item in line.split(" ") if item !=''] df.loc[len(df)]=np.array(splt) if 'time, hrs. sza, deg.' in line: pass_go=True df=pd.DataFrame(columns= ['time', 'sza']+ list(map_cols.values())) to_mat={name: col.values for name, col in df.items()} filename= os.path.join('C:/Users/jhask/OneDrive/Documents/MATLAB/F0AM/Setups/SOAS_RCIM/'+'F0AM_tuv.mat') sio.savemat(filename, to_mat) print(filename)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 3300, 7653, 1467, 1248, 25, 3312, 25, 2713, 33448, 201, 198, 201, 198, 31, 9800, 25, 474, 71, 2093, 201, 198, 37811, 201, 198, 11748, 269, 21370, 220, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 299, 32152, 355, 45941, 220, 201, 198, 11748, 302, 201, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 220, 201, 198, 11748, 28686, 220, 201, 198, 201, 198, 2, 9347, 13122, 44, 3891, 284, 309, 31667, 14722, 220, 201, 198, 73, 62, 12786, 62, 11600, 28, 8633, 15090, 201, 198, 6, 46, 18, 4613, 440, 17, 1343, 440, 7, 16, 35, 8, 10354, 6, 41, 16, 3256, 201, 198, 6, 46, 18, 4613, 440, 17, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 17, 3256, 201, 198, 6, 39, 17, 46, 17, 4613, 362, 18723, 10354, 6, 41, 18, 3256, 201, 198, 6, 15285, 17, 4613, 8005, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 19, 3256, 201, 198, 6, 15285, 18, 4613, 8005, 1343, 440, 17, 10354, 6, 41, 20, 3256, 201, 198, 6, 15285, 18, 4613, 8005, 17, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 21, 3256, 201, 198, 6, 39, 15285, 17, 4613, 18723, 1343, 8005, 10354, 6, 41, 22, 3256, 201, 198, 6, 39, 15285, 18, 4613, 18723, 1343, 8005, 17, 10354, 6, 41, 23, 3256, 201, 198, 6, 3398, 17, 46, 4613, 367, 1343, 367, 8220, 10354, 6, 41, 1157, 3256, 201, 198, 6, 3398, 17, 46, 4613, 367, 17, 1343, 7375, 10354, 6, 41, 1065, 3256, 201, 198, 6, 3398, 18, 44899, 4613, 5870, 18, 1343, 367, 8220, 10354, 6, 41, 1485, 3256, 201, 198, 6, 34, 17, 39, 20, 44899, 4613, 327, 17, 39, 20, 1343, 367, 8220, 10354, 6, 41, 1415, 3256, 201, 198, 6, 3398, 17, 28, 34, 7, 3398, 18, 8, 44899, 4613, 18675, 10354, 6, 41, 1507, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 18, 4613, 5870, 18, 8220, 1343, 5870, 18, 10354, 6, 41, 2481, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 17, 3398, 18, 4613, 5870, 18, 8220, 1343, 5870, 17, 3398, 18, 10354, 6, 41, 1828, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 28, 3398, 17, 4613, 18675, 10354, 6, 41, 1954, 3256, 201, 198, 6, 44899, 44899, 4613, 367, 17, 1343, 362, 8220, 10354, 6, 41, 3132, 3256, 201, 198, 6, 44899, 44899, 4613, 5870, 17, 46, 1343, 7375, 10354, 6, 41, 2624, 3256, 201, 198, 6, 44899, 44899, 4613, 367, 8220, 1343, 367, 8220, 10354, 6, 41, 2091, 3256, 201, 198, 6, 3398, 18, 8220, 44899, 4613, 5870, 18, 8220, 1343, 367, 8220, 10354, 6, 41, 2682, 3256, 201, 198, 6, 3398, 18, 34, 4503, 46, 3398, 18, 4613, 18675, 10354, 6, 41, 2327, 3256, 201, 198, 6, 3398, 18, 6684, 39, 4613, 5870, 18, 46, 1343, 18723, 10354, 6, 41, 3901, 3256, 201, 198, 6, 3398, 18, 1340, 46, 17, 4613, 5870, 18, 46, 1343, 8005, 17, 10354, 6, 41, 4349, 3256, 201, 198, 6, 34, 17, 39, 20, 1340, 46, 17, 4613, 327, 17, 39, 20, 46, 1343, 8005, 17, 10354, 6, 41, 4309, 3256, 201, 198, 6, 77, 12, 34, 18, 39, 22, 1340, 46, 17, 4613, 327, 18, 39, 22, 46, 1343, 8005, 17, 10354, 6, 41, 4310, 3256, 201, 198, 6, 3398, 18, 3398, 1340, 46, 17, 3398, 18, 4613, 5870, 18, 44899, 3398, 18, 1343, 8005, 17, 10354, 6, 41, 4051, 3256, 201, 198, 6, 34, 7, 3398, 18, 8, 18, 7, 1340, 46, 17, 8, 4613, 327, 7, 3398, 18, 8, 18, 7, 46, 2014, 1343, 8005, 17, 10354, 6, 41, 2816, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 17, 7, 1340, 46, 17, 8, 4613, 5870, 18, 8220, 3398, 17, 7, 46, 2014, 1343, 8005, 17, 10354, 6, 41, 3980, 3256, 201, 198, 6, 3398, 17, 7, 12096, 8, 8220, 3398, 18, 4613, 5870, 18, 8220, 1343, 5870, 17, 7, 12096, 8, 10354, 6, 41, 77, 940, 3256, 201, 198, 6, 3398, 17, 28, 3398, 44899, 4613, 18675, 10354, 6, 41, 77, 1157, 3256, 201, 198, 6, 3398, 18, 8220, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 8220, 7, 6684, 8, 1343, 8005, 17, 10354, 6, 41, 77, 1415, 3256, 201, 198, 6, 3398, 18, 8220, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 8220, 7, 46, 8, 1343, 8005, 18, 10354, 6, 41, 77, 1314, 3256, 201, 198, 6, 3398, 18, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 7, 6684, 8, 1343, 8005, 17, 10354, 6, 41, 77, 1433, 3256, 201, 198, 6, 3398, 18, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 7, 6684, 8, 1343, 8005, 17, 10354, 6, 41, 77, 1558, 3256, 201, 198, 6, 45, 17, 46, 20, 4613, 8005, 18, 1343, 8005, 17, 10354, 6, 41, 77, 1129, 3256, 201, 198, 6, 45, 17, 46, 20, 4613, 8005, 18, 1343, 8005, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 77, 1238, 3256, 201, 198, 6, 39, 15285, 19, 4613, 40115, 17, 1343, 8005, 17, 10354, 6, 41, 77, 2481, 6, 30072, 201, 198, 201, 198, 201, 198, 2, 51, 31667, 5072, 2393, 13, 220, 201, 198, 7753, 28, 705, 34, 14079, 14490, 14, 73, 71, 2093, 14, 3198, 24825, 14, 38354, 14, 41636, 48780, 14, 37, 15, 2390, 14, 7248, 4739, 14, 15821, 1921, 62, 7397, 3955, 14, 6513, 321, 62, 21, 62, 1959, 62, 448, 13, 14116, 6, 201, 198, 201, 198, 4480, 1280, 7, 7753, 11, 366, 81, 1600, 48277, 2625, 46430, 4943, 355, 277, 25, 1303, 1100, 1627, 416, 1627, 13, 201, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 11, 46728, 2676, 2625, 59, 83, 4943, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 20768, 1096, 410, 945, 356, 6070, 287, 3555, 262, 2393, 13, 220, 201, 198, 220, 220, 220, 300, 77, 62, 22510, 796, 657, 26, 3975, 62, 4033, 82, 28, 11600, 15090, 30072, 201, 198, 220, 220, 220, 287, 62, 35448, 62, 4868, 28, 25101, 26, 220, 201, 198, 201, 198, 220, 220, 220, 1208, 62, 2188, 28, 25101, 201, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 366, 27071, 22179, 7, 808, 8, 220, 1303, 1100, 1627, 416, 1627, 13, 220, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 289, 67, 3808, 28, 685, 2539, 220, 329, 1994, 287, 1351, 7, 73, 62, 12786, 62, 11600, 13, 13083, 28955, 611, 1994, 287, 1627, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 31298, 3808, 8, 1875, 657, 1058, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 302, 13, 12947, 7, 81, 17912, 59, 67, 60, 9, 58, 59, 28, 59, 86, 60, 1600, 1627, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 11, 289, 67, 3808, 11, 474, 62, 12786, 62, 11600, 58, 289, 67, 3808, 58, 25, 7131, 15, 11907, 8, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 24697, 25, 3975, 62, 4033, 82, 58, 50145, 13, 8094, 3419, 22241, 73, 62, 12786, 62, 11600, 58, 289, 67, 3808, 58, 25, 7131, 15, 11907, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 6603, 62, 2188, 318, 6407, 8, 290, 19203, 23031, 6, 407, 287, 1627, 15179, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2034, 437, 262, 474, 12, 27160, 284, 262, 1366, 14535, 379, 428, 966, 287, 640, 13, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 83, 28, 685, 22468, 7, 9186, 8, 329, 2378, 287, 1627, 13, 35312, 7203, 366, 8, 611, 2378, 14512, 7061, 60, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 11925, 7, 7568, 15437, 28, 37659, 13, 18747, 7, 22018, 83, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2435, 11, 36201, 13, 220, 264, 4496, 11, 3396, 2637, 287, 1627, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 2188, 28, 17821, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 30094, 13, 6601, 19778, 7, 28665, 82, 28, 37250, 2435, 3256, 705, 82, 4496, 20520, 10, 1351, 7, 8899, 62, 4033, 82, 13, 27160, 3419, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 1462, 62, 6759, 34758, 3672, 25, 951, 13, 27160, 329, 1438, 11, 951, 287, 47764, 13, 23814, 3419, 92, 201, 198, 201, 198, 34345, 28, 28686, 13, 6978, 13, 22179, 10786, 34, 14079, 14490, 14, 73, 71, 2093, 14, 3198, 24825, 14, 38354, 14, 41636, 48780, 14, 37, 15, 2390, 14, 7248, 4739, 14, 15821, 1921, 62, 7397, 3955, 14, 6, 10, 6, 37, 15, 2390, 62, 83, 14795, 13, 6759, 11537, 201, 198, 82, 952, 13, 21928, 6759, 7, 34345, 11, 284, 62, 6759, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 4798, 7, 34345, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198 ]
1.792441
1,614
''' Imports ''' from config import * from newspaper import Article import sys as sys import pandas as pd import csv from collections import defaultdict import re ''' URL Extract ''' columns = defaultdict(list) with open('SecurityIDRBT.csv') as f: reader = csv.DictReader(f) # read rows into a dictionary format for row in reader: # read a row as {column1: value1, column2: value2,...} for (k,v) in row.items(): # go over each column name and value columns[k].append(v) # append the value into the appropriate list url_list = [] # based on column name k for element in range(len(columns['Body'])): urls = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', columns['Body'][element]) for url in urls: url_list.append(url) ''' Find Unique URLs and filter with semantic search results ''' url_unique = [] for element in url_list: if element not in url_unique: if element not in common_urls_http: if element not in common_urls_https: url_unique.append(element) ''' Write it in a new CSV ''' with open('url.csv', 'w',newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) for word in url_unique: wr.writerow([word])
[ 7061, 6, 201, 198, 3546, 3742, 201, 198, 7061, 6, 201, 198, 6738, 4566, 1330, 1635, 201, 198, 6738, 7533, 1330, 10172, 201, 198, 11748, 25064, 355, 25064, 201, 198, 11748, 19798, 292, 355, 279, 67, 220, 201, 198, 11748, 269, 21370, 201, 198, 6738, 17268, 1330, 4277, 11600, 201, 198, 11748, 302, 201, 198, 7061, 6, 201, 198, 21886, 29677, 201, 198, 7061, 6, 201, 198, 28665, 82, 796, 4277, 11600, 7, 4868, 8, 201, 198, 4480, 1280, 10786, 24074, 2389, 49, 19313, 13, 40664, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 35, 713, 33634, 7, 69, 8, 1303, 1100, 15274, 656, 257, 22155, 5794, 201, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 1303, 1100, 257, 5752, 355, 1391, 28665, 16, 25, 1988, 16, 11, 5721, 17, 25, 1988, 17, 42303, 92, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 74, 11, 85, 8, 287, 5752, 13, 23814, 33529, 1303, 467, 625, 1123, 5721, 1438, 290, 1988, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 58, 74, 4083, 33295, 7, 85, 8, 1303, 24443, 262, 1988, 656, 262, 5035, 1351, 201, 198, 6371, 62, 4868, 796, 17635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1912, 319, 5721, 1438, 479, 201, 198, 1640, 5002, 287, 2837, 7, 11925, 7, 28665, 82, 17816, 25842, 6, 12962, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2956, 7278, 796, 302, 13, 19796, 439, 10786, 5450, 30, 1378, 7, 27514, 58, 12, 59, 86, 8183, 91, 7, 27514, 4, 58, 59, 6814, 12, 69, 32, 12, 37, 60, 90, 17, 92, 4008, 10, 3256, 15180, 17816, 25842, 6, 7131, 30854, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 19016, 287, 2956, 7278, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 4868, 13, 33295, 7, 6371, 8, 201, 198, 7061, 6, 201, 198, 16742, 30015, 32336, 290, 8106, 351, 37865, 2989, 2482, 201, 198, 7061, 6, 201, 198, 6371, 62, 34642, 796, 17635, 201, 198, 1640, 5002, 287, 19016, 62, 4868, 25, 201, 198, 220, 220, 220, 611, 5002, 407, 287, 19016, 62, 34642, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 407, 287, 2219, 62, 6371, 82, 62, 4023, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 407, 287, 2219, 62, 6371, 82, 62, 5450, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 34642, 13, 33295, 7, 30854, 8, 201, 198, 7061, 6, 201, 198, 16594, 340, 287, 257, 649, 44189, 201, 198, 7061, 6, 220, 220, 220, 220, 201, 198, 201, 198, 4480, 1280, 10786, 6371, 13, 40664, 3256, 705, 86, 3256, 3605, 1370, 28, 7061, 8, 355, 616, 7753, 25, 201, 198, 220, 220, 220, 1319, 796, 269, 21370, 13, 16002, 7, 1820, 7753, 11, 28411, 28, 40664, 13, 10917, 23051, 62, 7036, 8, 201, 198, 220, 220, 220, 329, 1573, 287, 19016, 62, 34642, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1319, 13, 16002, 322, 26933, 4775, 12962, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220 ]
2.284014
588
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=missing-docstring from qiskit.mapper import _coupling from .common import QiskitTestCase
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 2864, 11, 19764, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 1043, 287, 198, 2, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 45688, 12, 15390, 8841, 628, 198, 6738, 10662, 1984, 270, 13, 76, 11463, 1330, 4808, 66, 280, 11347, 198, 6738, 764, 11321, 1330, 1195, 1984, 270, 14402, 20448, 628 ]
3.177083
96
import os import re import k3d import types import random import pytest import numbers import tempfile import itertools import numpy as np import discretisedfield as df import matplotlib.pyplot as plt from .test_mesh import TestMesh
[ 11748, 28686, 198, 11748, 302, 198, 11748, 479, 18, 67, 198, 11748, 3858, 198, 11748, 4738, 198, 11748, 12972, 9288, 198, 11748, 3146, 198, 11748, 20218, 7753, 198, 11748, 340, 861, 10141, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1221, 1186, 1417, 3245, 355, 47764, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 764, 9288, 62, 76, 5069, 1330, 6208, 37031, 628, 198 ]
3.405797
69
__all__ = ['get'] import collections def get(input): """return a list with input values or [] if input is None""" if input is None: return [] if not _iterable(input) or _string(input): return [input] return list(input)
[ 834, 439, 834, 796, 37250, 1136, 20520, 628, 198, 11748, 17268, 628, 628, 198, 4299, 651, 7, 15414, 2599, 198, 220, 220, 220, 37227, 7783, 257, 1351, 351, 5128, 3815, 393, 17635, 611, 5128, 318, 6045, 37811, 198, 220, 220, 220, 611, 5128, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 611, 407, 4808, 2676, 540, 7, 15414, 8, 393, 4808, 8841, 7, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 15414, 60, 198, 220, 220, 220, 1441, 1351, 7, 15414, 8, 198 ]
2.677083
96
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/8/20 0020 16:49 # @Author : Hadrianl # @File : __init__.py from .widget import StrategyReviewer
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 1058, 13130, 14, 23, 14, 1238, 3571, 1238, 1467, 25, 2920, 198, 2, 2488, 13838, 220, 1058, 11161, 4484, 75, 220, 198, 2, 2488, 8979, 220, 220, 220, 1058, 11593, 15003, 834, 13, 9078, 198, 198, 6738, 764, 42655, 1330, 20561, 35407 ]
2.323944
71
import xml.etree.ElementTree as ET xml_string = ''' <stuff> <users> <user x = "2"> <id>001</id> <name>Chuck</name> </user> <user x = "7"> <id>007</id> <name>Brent</name> </user> </users> </stuff> ''' root_stuff = ET.fromstring(xml_string) #don't usually refer to root element user_elements = root_stuff.findall('users/user') print ('user count:', len(user_elements)) for user in user_elements: print('name:', user.find('name').text) print('id:', user.find('id').text) print('attribute(x):', user.get('x')) #to identify attribute use 'get's
[ 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 198, 19875, 62, 8841, 796, 705, 7061, 198, 27, 41094, 29, 198, 220, 220, 220, 1279, 18417, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7220, 2124, 796, 366, 17, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 312, 29, 8298, 3556, 312, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 3672, 29, 44324, 3556, 3672, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7220, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7220, 2124, 796, 366, 22, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 312, 29, 25816, 3556, 312, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 3672, 29, 33, 1156, 3556, 3672, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7220, 29, 198, 220, 220, 220, 7359, 18417, 29, 198, 3556, 41094, 29, 198, 7061, 6, 198, 198, 15763, 62, 41094, 796, 12152, 13, 6738, 8841, 7, 19875, 62, 8841, 8, 198, 2, 9099, 470, 3221, 3522, 284, 6808, 5002, 198, 7220, 62, 68, 3639, 796, 6808, 62, 41094, 13, 19796, 439, 10786, 18417, 14, 7220, 11537, 198, 4798, 19203, 7220, 954, 25, 3256, 18896, 7, 7220, 62, 68, 3639, 4008, 198, 198, 1640, 2836, 287, 2836, 62, 68, 3639, 25, 198, 220, 220, 220, 3601, 10786, 3672, 25, 3256, 2836, 13, 19796, 10786, 3672, 27691, 5239, 8, 198, 220, 220, 220, 3601, 10786, 312, 25, 3256, 2836, 13, 19796, 10786, 312, 27691, 5239, 8, 198, 220, 220, 220, 3601, 10786, 42348, 7, 87, 2599, 3256, 2836, 13, 1136, 10786, 87, 6, 4008, 198, 220, 220, 220, 1303, 1462, 5911, 11688, 779, 705, 1136, 338, 198 ]
2.142384
302
from multiprocessing.dummy import Pool pool = Pool(3) origin_num = [x for x in range(10)] result = pool.map(calc_power2, origin_num) print(f'计算1-10的平方分别为:{result}')
[ 6738, 18540, 305, 919, 278, 13, 67, 13513, 1330, 19850, 628, 198, 7742, 796, 19850, 7, 18, 8, 198, 47103, 62, 22510, 796, 685, 87, 329, 2124, 287, 2837, 7, 940, 15437, 198, 20274, 796, 5933, 13, 8899, 7, 9948, 66, 62, 6477, 17, 11, 8159, 62, 22510, 8, 198, 4798, 7, 69, 6, 164, 106, 94, 163, 106, 245, 16, 12, 940, 21410, 33176, 111, 43095, 26344, 228, 26344, 104, 10310, 118, 171, 120, 248, 90, 20274, 92, 11537, 628, 198 ]
2.060976
82
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
from django.core.urlresolvers import reverse from django.views.generic.detail import DetailView from django.views.generic.list import ListView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.core.urlresolvers import reverse_lazy from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from .models import Eintrag from .forms import EintragForm
[ 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 49170, 1330, 42585, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 4868, 1330, 7343, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 19312, 1330, 13610, 7680, 11, 10133, 7680, 11, 23520, 7680, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 62, 75, 12582, 198, 6738, 42625, 14208, 13, 26791, 13, 12501, 273, 2024, 1330, 2446, 62, 12501, 273, 1352, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 764, 27530, 1330, 412, 600, 22562, 198, 6738, 764, 23914, 1330, 412, 600, 22562, 8479, 628, 628, 628 ]
3.5
126
from typing import Any, Optional, Tuple, Union import torch from torch.nn.functional import mse_loss import pystiche import pystiche.loss.functional as F from pystiche import enc, loss from pystiche_papers.utils import HyperParameters from ._utils import ( extract_normalized_patches2d, hyper_parameters as _hyper_parameters, multi_layer_encoder as _multi_layer_encoder, target_transforms as _target_transforms, ) __all__ = [ "FeatureReconstructionLoss", "content_loss", "MRFLoss", "style_loss", "TotalVariationLoss", "regularization", "perceptual_loss", ] class FeatureReconstructionLoss(loss.FeatureReconstructionLoss): r"""Feature reconstruction loss from :cite:`LW2016`. Args: encoder: Encoder used to encode the input. impl_params: If ``False``, calculate the score with the squared error (SE) instead of the mean squared error (MSE). **feature_reconstruction_loss_kwargs: Additional parameters of a :class:`pystiche.loss.FeatureReconstructionLoss`. .. seealso:: :class:`pystiche.loss.FeatureReconstructionLoss` """ def content_loss( impl_params: bool = True, multi_layer_encoder: Optional[enc.MultiLayerEncoder] = None, hyper_parameters: Optional[HyperParameters] = None, ) -> FeatureReconstructionLoss: r"""Content loss from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. multi_layer_encoder: Pretrained multi-layer encoder. If omitted, :func:`~pystiche_papers.li_wand_2016.multi_layer_encoder` is used. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: :class:`pystiche_papers.li_wand_2016.FeatureReconstructionLoss` """ if multi_layer_encoder is None: multi_layer_encoder = _multi_layer_encoder() if hyper_parameters is None: hyper_parameters = _hyper_parameters(impl_params=impl_params) return FeatureReconstructionLoss( multi_layer_encoder.extract_encoder(hyper_parameters.content_loss.layer), impl_params=impl_params, score_weight=hyper_parameters.content_loss.score_weight, ) class MRFLoss(loss.MRFLoss): r"""MRF loss from :cite:`LW2016`. Args: encoder: Encoder used to encode the input. patch_size: Spatial size of the neural patches. impl_params: If ``True``, normalize the gradient of the neural patches. If ``False``, use a score correction factor of 1/2. **mrf_loss_kwargs: Additional parameters of a :class:`pystiche.loss.MRFLoss`. In contrast to :class:`pystiche.loss.MRFLoss`, the score is calculated with the squared error (SE) instead of the mean squared error (MSE). .. seealso:: - :class:`pystiche.loss.MRFLoss` - :func:`pystiche_papers.li_wand_2016.extract_normalized_patches2d` """ def style_loss( impl_params: bool = True, multi_layer_encoder: Optional[enc.MultiLayerEncoder] = None, hyper_parameters: Optional[HyperParameters] = None, ) -> loss.MultiLayerEncodingLoss: r"""Style loss from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. multi_layer_encoder: Pretrained multi-layer encoder. If omitted, :func:`~pystiche_papers.li_wand_2016.multi_layer_encoder` is used. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: - :class:`pystiche_papers.li_wand_2016.MRFLoss` """ if multi_layer_encoder is None: multi_layer_encoder = _multi_layer_encoder() if hyper_parameters is None: hyper_parameters = _hyper_parameters(impl_params=impl_params) return loss.MultiLayerEncodingLoss( multi_layer_encoder, hyper_parameters.style_loss.layers, encoding_loss_fn, layer_weights=hyper_parameters.style_loss.layer_weights, score_weight=hyper_parameters.style_loss.score_weight, ) class TotalVariationLoss(loss.TotalVariationLoss): r"""Total variation loss from :cite:`LW2016`. Args: impl_params: If ``False``, use a score correction factor of 1/2. **total_variation_loss_kwargs: Additional parameters of a :class:`pystiche.loss.TotalVariationLoss`. In contrast to :class:`pystiche.loss.TotalVariationLoss`, the the score is calculated with the squared error (SE) instead of the mean squared error (MSE). .. seealso:: - :class:`pystiche.loss.TotalVariationLoss` """ def regularization( impl_params: bool = True, hyper_parameters: Optional[HyperParameters] = None, ) -> TotalVariationLoss: r"""Regularization from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: - :class:`pystiche_papers.li_wand_2016.TotalVariationLoss` """ if hyper_parameters is None: hyper_parameters = _hyper_parameters() return TotalVariationLoss( impl_params=impl_params, score_weight=hyper_parameters.regularization.score_weight, ) def perceptual_loss( impl_params: bool = True, multi_layer_encoder: Optional[enc.MultiLayerEncoder] = None, hyper_parameters: Optional[HyperParameters] = None, ) -> loss.PerceptualLoss: r"""Perceptual loss from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. multi_layer_encoder: Pretrained multi-layer encoder. If omitted, :func:`~pystiche_papers.li_wand_2016.multi_layer_encoder` is used. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: - :func:`pystiche_papers.li_wand_2016.content_loss` - :func:`pystiche_papers.li_wand_2016.style_loss` - :func:`pystiche_papers.li_wand_2016.regularization` """ if multi_layer_encoder is None: multi_layer_encoder = _multi_layer_encoder() if hyper_parameters is None: hyper_parameters = _hyper_parameters() return loss.PerceptualLoss( content_loss( impl_params=impl_params, multi_layer_encoder=multi_layer_encoder, hyper_parameters=hyper_parameters, ), style_loss( impl_params=impl_params, multi_layer_encoder=multi_layer_encoder, hyper_parameters=hyper_parameters, ), regularization(impl_params=impl_params, hyper_parameters=hyper_parameters), )
[ 6738, 19720, 1330, 4377, 11, 32233, 11, 309, 29291, 11, 4479, 198, 198, 11748, 28034, 198, 6738, 28034, 13, 20471, 13, 45124, 1330, 285, 325, 62, 22462, 198, 198, 11748, 12972, 11268, 258, 198, 11748, 12972, 11268, 258, 13, 22462, 13, 45124, 355, 376, 198, 6738, 12972, 11268, 258, 1330, 2207, 11, 2994, 198, 6738, 12972, 11268, 258, 62, 40491, 13, 26791, 1330, 15079, 48944, 198, 198, 6738, 47540, 26791, 1330, 357, 198, 220, 220, 220, 7925, 62, 11265, 1143, 62, 8071, 2052, 17, 67, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 355, 4808, 49229, 62, 17143, 7307, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 355, 4808, 41684, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 2496, 62, 7645, 23914, 355, 4808, 16793, 62, 7645, 23914, 11, 198, 8, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 38816, 6690, 261, 15019, 43, 793, 1600, 198, 220, 220, 220, 366, 11299, 62, 22462, 1600, 198, 220, 220, 220, 366, 13599, 3697, 793, 1600, 198, 220, 220, 220, 366, 7635, 62, 22462, 1600, 198, 220, 220, 220, 366, 14957, 23907, 341, 43, 793, 1600, 198, 220, 220, 220, 366, 16338, 1634, 1600, 198, 220, 220, 220, 366, 525, 984, 723, 62, 22462, 1600, 198, 60, 628, 198, 4871, 27018, 6690, 261, 15019, 43, 793, 7, 22462, 13, 38816, 6690, 261, 15019, 43, 793, 2599, 198, 220, 220, 220, 374, 37811, 38816, 25056, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 25, 14711, 12342, 973, 284, 37773, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 1002, 7559, 25101, 15506, 11, 15284, 262, 4776, 351, 262, 44345, 4049, 357, 5188, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2427, 286, 262, 1612, 44345, 4049, 357, 44, 5188, 737, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 30053, 62, 260, 9979, 2762, 62, 22462, 62, 46265, 22046, 25, 15891, 10007, 286, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 38816, 6690, 261, 15019, 43, 793, 44646, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 38816, 6690, 261, 15019, 43, 793, 63, 198, 220, 220, 220, 37227, 628, 198, 4299, 2695, 62, 22462, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 32233, 58, 12685, 13, 29800, 49925, 27195, 12342, 60, 796, 6045, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 27018, 6690, 261, 15019, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 19746, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 37123, 13363, 5021, 12, 29289, 2207, 12342, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22532, 11, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 41684, 62, 29289, 62, 12685, 12342, 63, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 38816, 6690, 261, 15019, 43, 793, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 62, 29289, 62, 12685, 12342, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 796, 4808, 41684, 62, 29289, 62, 12685, 12342, 3419, 628, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 7, 23928, 62, 37266, 28, 23928, 62, 37266, 8, 628, 220, 220, 220, 1441, 27018, 6690, 261, 15019, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 13, 2302, 974, 62, 12685, 12342, 7, 49229, 62, 17143, 7307, 13, 11299, 62, 22462, 13, 29289, 828, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 6551, 28, 49229, 62, 17143, 7307, 13, 11299, 62, 22462, 13, 26675, 62, 6551, 11, 198, 220, 220, 220, 1267, 628, 198, 4871, 17242, 3697, 793, 7, 22462, 13, 13599, 3697, 793, 2599, 198, 220, 220, 220, 374, 37811, 13599, 37, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 25, 14711, 12342, 973, 284, 37773, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8529, 62, 7857, 25, 1338, 34961, 2546, 286, 262, 17019, 16082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 1002, 7559, 17821, 15506, 11, 3487, 1096, 262, 31312, 286, 262, 17019, 16082, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 25101, 15506, 11, 779, 257, 4776, 17137, 5766, 286, 352, 14, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 76, 41871, 62, 22462, 62, 46265, 22046, 25, 15891, 10007, 286, 257, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 13599, 3697, 793, 44646, 628, 220, 220, 220, 554, 6273, 284, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 13599, 3697, 793, 47671, 262, 4776, 318, 10488, 351, 262, 198, 220, 220, 220, 44345, 4049, 357, 5188, 8, 2427, 286, 262, 1612, 44345, 4049, 357, 44, 5188, 737, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 13599, 3697, 793, 63, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 2302, 974, 62, 11265, 1143, 62, 8071, 2052, 17, 67, 63, 198, 220, 220, 220, 37227, 628, 198, 4299, 3918, 62, 22462, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 32233, 58, 12685, 13, 29800, 49925, 27195, 12342, 60, 796, 6045, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 2994, 13, 29800, 49925, 27195, 7656, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 21466, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 37123, 13363, 5021, 12, 29289, 2207, 12342, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22532, 11, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 41684, 62, 29289, 62, 12685, 12342, 63, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 13599, 3697, 793, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 62, 29289, 62, 12685, 12342, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 796, 4808, 41684, 62, 29289, 62, 12685, 12342, 3419, 628, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 7, 23928, 62, 37266, 28, 23928, 62, 37266, 8, 628, 220, 220, 220, 1441, 2994, 13, 29800, 49925, 27195, 7656, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 13, 7635, 62, 22462, 13, 75, 6962, 11, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 22462, 62, 22184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 43775, 28, 49229, 62, 17143, 7307, 13, 7635, 62, 22462, 13, 29289, 62, 43775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 6551, 28, 49229, 62, 17143, 7307, 13, 7635, 62, 22462, 13, 26675, 62, 6551, 11, 198, 220, 220, 220, 1267, 628, 198, 4871, 7472, 23907, 341, 43, 793, 7, 22462, 13, 14957, 23907, 341, 43, 793, 2599, 198, 220, 220, 220, 374, 37811, 14957, 12291, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 1002, 7559, 25101, 15506, 11, 779, 257, 4776, 17137, 5766, 286, 352, 14, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 23350, 62, 25641, 341, 62, 22462, 62, 46265, 22046, 25, 15891, 10007, 286, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 14957, 23907, 341, 43, 793, 44646, 628, 220, 220, 220, 554, 6273, 284, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 14957, 23907, 341, 43, 793, 47671, 262, 262, 4776, 318, 198, 220, 220, 220, 10488, 351, 262, 44345, 4049, 357, 5188, 8, 2427, 286, 262, 1612, 44345, 4049, 357, 44, 5188, 737, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 14957, 23907, 341, 43, 793, 63, 198, 220, 220, 220, 37227, 628, 198, 4299, 3218, 1634, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 7472, 23907, 341, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 40164, 1634, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 14957, 23907, 341, 43, 793, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 3419, 628, 220, 220, 220, 1441, 7472, 23907, 341, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 6551, 28, 49229, 62, 17143, 7307, 13, 16338, 1634, 13, 26675, 62, 6551, 11, 198, 220, 220, 220, 1267, 628, 198, 4299, 49615, 62, 22462, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 32233, 58, 12685, 13, 29800, 49925, 27195, 12342, 60, 796, 6045, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 2994, 13, 5990, 984, 723, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 5990, 984, 723, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 37123, 13363, 5021, 12, 29289, 2207, 12342, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22532, 11, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 41684, 62, 29289, 62, 12685, 12342, 63, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 11299, 62, 22462, 63, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 7635, 62, 22462, 63, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 16338, 1634, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 62, 29289, 62, 12685, 12342, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 796, 4808, 41684, 62, 29289, 62, 12685, 12342, 3419, 628, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 3419, 628, 220, 220, 220, 1441, 2994, 13, 5990, 984, 723, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 62, 22462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 28, 41684, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 28, 49229, 62, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 62, 22462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 28, 41684, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 28, 49229, 62, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 3218, 1634, 7, 23928, 62, 37266, 28, 23928, 62, 37266, 11, 8718, 62, 17143, 7307, 28, 49229, 62, 17143, 7307, 828, 198, 220, 220, 220, 1267, 198 ]
2.511022
2,994
# -*- coding: utf-8 -*- # (c) 2017-2019, ETH Zurich, Institut fuer Theoretische Physik # Author: Dominik Gresch <greschd@gmx.ch> """ Configuration file for the pytest tests. """ import os import json import pytest import numpy as np import bands_inspect as bi import parameters # pylint: disable=wrong-import-order #--------------------------FIXTURES-------------------------------------# @pytest.fixture def test_name(request): """Returns module_name.function_name for a given test""" return request.module.__name__ + '/' + request._parent_request._pyfuncitem.name # pylint: disable=protected-access @pytest.fixture def compare_data(request, test_name, scope="session"): # pylint: disable=unused-argument,redefined-outer-name """Returns a function which either saves some data to a file or (if that file exists already) compares it to pre-existing data using a given comparison function.""" return inner @pytest.fixture def compare_equal(compare_data): # pylint: disable=redefined-outer-name """ Returns a function which checks that a given data is equal to the stored reference. """ return lambda data, tag=None: compare_data(lambda x, y: x == y, data, tag) @pytest.fixture def assert_equal(): """ Returns a function which checks that two bands-inspect object instances are equal. """ return inner @pytest.fixture def sample(): """ Returns the absolute path of the sample with a given name. """ return inner
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 357, 66, 8, 2177, 12, 23344, 11, 35920, 43412, 11, 37931, 315, 14035, 263, 383, 9997, 46097, 8687, 1134, 198, 2, 6434, 25, 11817, 1134, 402, 411, 354, 1279, 34239, 354, 67, 31, 70, 36802, 13, 354, 29, 198, 37811, 198, 38149, 2393, 329, 262, 12972, 9288, 5254, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 33918, 198, 198, 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 11760, 62, 1040, 806, 355, 3182, 198, 198, 11748, 10007, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36460, 12, 11748, 12, 2875, 198, 198, 2, 22369, 438, 47084, 51, 29514, 3880, 30934, 2, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 1332, 62, 3672, 7, 25927, 2599, 198, 220, 220, 220, 37227, 35561, 8265, 62, 3672, 13, 8818, 62, 3672, 329, 257, 1813, 1332, 37811, 198, 220, 220, 220, 1441, 2581, 13, 21412, 13, 834, 3672, 834, 1343, 31051, 6, 1343, 2581, 13557, 8000, 62, 25927, 13557, 9078, 20786, 9186, 13, 3672, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 8996, 62, 7890, 7, 25927, 11, 1332, 62, 3672, 11, 8354, 2625, 29891, 1, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 11, 445, 18156, 12, 39605, 12, 3672, 198, 220, 220, 220, 37227, 35561, 257, 2163, 543, 2035, 16031, 617, 1366, 284, 257, 2393, 393, 357, 361, 326, 2393, 7160, 1541, 8, 23008, 340, 284, 662, 12, 25687, 1366, 1262, 257, 1813, 7208, 2163, 526, 15931, 628, 220, 220, 220, 1441, 8434, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 8996, 62, 40496, 7, 5589, 533, 62, 7890, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 445, 18156, 12, 39605, 12, 3672, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 2163, 543, 8794, 326, 257, 1813, 1366, 318, 4961, 284, 262, 8574, 4941, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 37456, 1366, 11, 7621, 28, 14202, 25, 8996, 62, 7890, 7, 50033, 2124, 11, 331, 25, 2124, 6624, 331, 11, 1366, 11, 7621, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 6818, 62, 40496, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 2163, 543, 8794, 326, 734, 11760, 12, 1040, 806, 2134, 10245, 389, 4961, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 8434, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 6291, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 4112, 3108, 286, 262, 6291, 351, 257, 1813, 1438, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 8434, 198 ]
3.191898
469
import os # import tensorflow as tf import tensorrt as trt from tensorrt.parsers import uffparser import pycuda.driver as cuda # import uff import cv2 import numpy as np from tqdm import tqdm TEST_PATH = "/media/andy/Data/DevWorkSpace/Projects/imageClassifier/data/test/" LABEL = 0 ENGINE_PATH = "/home/andy/caffe/examples/mydata/slot_classifier/engine/px2_classifier.engine" NET_INPUT_SHAPE = (256, 256) NET_OUTPUT_SHAPE = 5 class_labels = ['error', 'half', 'invlb', 'invls', 'valid'] # Load Image imgTestData = test_Loader(TEST_PATH, NET_INPUT_SHAPE) # Load Engine file G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.ERROR) engine = trt.utils.load_engine(G_LOGGER, ENGINE_PATH) context = engine.create_execution_context() runtime = trt.infer.create_infer_runtime(G_LOGGER) # output = np.empty(1, dtype = np.float32) # # Alocate device memory # d_input = cuda.mem_alloc(1 * imgTestData[0][0][0].nbytes) # d_output = cuda.mem_alloc(NET_OUTPUT_SHAPE * output.nbytes) # bindings = [int(d_input), int(d_output)] # stream = cuda.Stream() predicts = [] pair = imgTestData[0] for img, label in pair: output = np.empty(NET_OUTPUT_SHAPE, dtype = np.float32) # Alocate device memory d_input = cuda.mem_alloc(1 * img.nbytes) d_output = cuda.mem_alloc(1 * output.nbytes) bindings = [int(d_input), int(d_output)] stream = cuda.Stream() # Transfer input data to device cuda.memcpy_htod_async(d_input, img, stream) # Execute model context.enqueue(1, bindings, stream.handle, None) # Transfer predictions back cuda.memcpy_dtoh_async(output, d_output, stream) # Syncronize threads stream.synchronize() softmax = np.exp(output) / np.sum(np.exp(output)) predict = np.argmax(softmax) predicts.append(predict) print("True = ",label, ", predict = ", predict, ", softmax = ", softmax) grandTrue = np.array(imgTestData[1][1]) predicts = np.array(predicts) error = predicts[predicts!=grandTrue] print(imgTestData[1][1]) print("-------") print(predicts) print("-------") print(len(error)) print((len(imgTestData[0])-len(error))/len(imgTestData[0]))
[ 11748, 28686, 198, 2, 1330, 11192, 273, 11125, 355, 48700, 198, 11748, 11192, 273, 17034, 355, 491, 83, 198, 6738, 11192, 273, 17034, 13, 79, 945, 364, 1330, 334, 487, 48610, 198, 11748, 12972, 66, 15339, 13, 26230, 355, 269, 15339, 198, 2, 1330, 334, 487, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 628, 198, 198, 51, 6465, 62, 34219, 796, 12813, 11431, 14, 10757, 14, 6601, 14, 13603, 12468, 14106, 14, 16775, 82, 14, 9060, 9487, 7483, 14, 7890, 14, 9288, 30487, 198, 48780, 3698, 796, 657, 198, 26808, 8881, 62, 34219, 796, 12813, 11195, 14, 10757, 14, 66, 21223, 14, 1069, 12629, 14, 1820, 7890, 14, 43384, 62, 4871, 7483, 14, 18392, 14, 8416, 17, 62, 4871, 7483, 13, 18392, 1, 198, 12884, 62, 1268, 30076, 62, 9693, 45721, 796, 357, 11645, 11, 17759, 8, 198, 12884, 62, 2606, 7250, 3843, 62, 9693, 45721, 796, 642, 198, 4871, 62, 23912, 1424, 796, 37250, 18224, 3256, 705, 13959, 3256, 705, 16340, 23160, 3256, 705, 16340, 7278, 3256, 705, 12102, 20520, 198, 198, 2, 8778, 7412, 628, 198, 9600, 14402, 6601, 796, 1332, 62, 17401, 7, 51, 6465, 62, 34219, 11, 30502, 62, 1268, 30076, 62, 9693, 45721, 8, 198, 198, 2, 8778, 7117, 2393, 198, 38, 62, 25294, 30373, 796, 491, 83, 13, 259, 2232, 13, 47581, 11187, 1362, 7, 2213, 83, 13, 259, 2232, 13, 11187, 50, 964, 414, 13, 24908, 8, 198, 18392, 796, 491, 83, 13, 26791, 13, 2220, 62, 18392, 7, 38, 62, 25294, 30373, 11, 36924, 8881, 62, 34219, 8, 198, 22866, 796, 3113, 13, 17953, 62, 18558, 1009, 62, 22866, 3419, 198, 43282, 796, 491, 83, 13, 259, 2232, 13, 17953, 62, 259, 2232, 62, 43282, 7, 38, 62, 25294, 30373, 8, 198, 198, 2, 5072, 796, 45941, 13, 28920, 7, 16, 11, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 198, 2, 1303, 978, 13369, 3335, 4088, 198, 2, 288, 62, 15414, 796, 269, 15339, 13, 11883, 62, 32332, 7, 16, 1635, 33705, 14402, 6601, 58, 15, 7131, 15, 7131, 15, 4083, 77, 33661, 8, 198, 2, 288, 62, 22915, 796, 269, 15339, 13, 11883, 62, 32332, 7, 12884, 62, 2606, 7250, 3843, 62, 9693, 45721, 1635, 5072, 13, 77, 33661, 8, 198, 198, 2, 34111, 796, 685, 600, 7, 67, 62, 15414, 828, 493, 7, 67, 62, 22915, 15437, 198, 198, 2, 4269, 796, 269, 15339, 13, 12124, 3419, 198, 198, 28764, 14137, 796, 17635, 198, 24874, 796, 33705, 14402, 6601, 58, 15, 60, 198, 1640, 33705, 11, 6167, 287, 5166, 25, 198, 220, 220, 220, 5072, 796, 45941, 13, 28920, 7, 12884, 62, 2606, 7250, 3843, 62, 9693, 45721, 11, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 628, 220, 220, 220, 1303, 978, 13369, 3335, 4088, 198, 220, 220, 220, 288, 62, 15414, 796, 269, 15339, 13, 11883, 62, 32332, 7, 16, 1635, 33705, 13, 77, 33661, 8, 198, 220, 220, 220, 288, 62, 22915, 796, 269, 15339, 13, 11883, 62, 32332, 7, 16, 1635, 5072, 13, 77, 33661, 8, 628, 220, 220, 220, 34111, 796, 685, 600, 7, 67, 62, 15414, 828, 493, 7, 67, 62, 22915, 15437, 628, 220, 220, 220, 4269, 796, 269, 15339, 13, 12124, 3419, 198, 220, 220, 220, 1303, 20558, 5128, 1366, 284, 3335, 198, 220, 220, 220, 269, 15339, 13, 11883, 66, 9078, 62, 4352, 375, 62, 292, 13361, 7, 67, 62, 15414, 11, 33705, 11, 4269, 8, 198, 220, 220, 220, 1303, 8393, 1133, 2746, 220, 198, 220, 220, 220, 4732, 13, 268, 36560, 7, 16, 11, 34111, 11, 4269, 13, 28144, 11, 6045, 8, 198, 220, 220, 220, 1303, 20558, 16277, 736, 198, 220, 220, 220, 269, 15339, 13, 11883, 66, 9078, 62, 28664, 1219, 62, 292, 13361, 7, 22915, 11, 288, 62, 22915, 11, 4269, 8, 198, 220, 220, 220, 1303, 35908, 1313, 1096, 14390, 198, 220, 220, 220, 4269, 13, 28869, 11413, 1096, 3419, 628, 220, 220, 220, 2705, 9806, 796, 45941, 13, 11201, 7, 22915, 8, 1220, 45941, 13, 16345, 7, 37659, 13, 11201, 7, 22915, 4008, 198, 220, 220, 220, 4331, 796, 45941, 13, 853, 9806, 7, 4215, 9806, 8, 198, 220, 220, 220, 26334, 13, 33295, 7, 79, 17407, 8, 628, 220, 220, 220, 3601, 7203, 17821, 796, 33172, 18242, 11, 33172, 4331, 796, 33172, 4331, 11, 33172, 2705, 9806, 796, 33172, 2705, 9806, 8, 628, 198, 23936, 17821, 796, 45941, 13, 18747, 7, 9600, 14402, 6601, 58, 16, 7131, 16, 12962, 198, 28764, 14137, 796, 45941, 13, 18747, 7, 28764, 14137, 8, 198, 18224, 796, 26334, 58, 28764, 14137, 0, 28, 23936, 17821, 60, 198, 198, 4798, 7, 9600, 14402, 6601, 58, 16, 7131, 16, 12962, 198, 4798, 7203, 26866, 4943, 198, 4798, 7, 28764, 14137, 8, 198, 4798, 7203, 26866, 4943, 198, 4798, 7, 11925, 7, 18224, 4008, 198, 4798, 19510, 11925, 7, 9600, 14402, 6601, 58, 15, 12962, 12, 11925, 7, 18224, 4008, 14, 11925, 7, 9600, 14402, 6601, 58, 15, 60, 4008 ]
2.546108
835
import filters import numpy as np import matplotlib.pyplot as plt from scipy.signal import freqz from sklearn.neural_network import MLPRegressor if __name__ == "__main__": # Create a random dataset # [fc, bandwidth, gain] n = 100 filtersNum = 1 X, Y = genXY(n=n, filtersNum=filtersNum) # Fit regression model regr = MLPRegressor(hidden_layer_sizes=(10,), max_iter=10000) regr.fit(X, Y) print('train loss', regr.loss_) # Predict X_test, Y_test = genXY(n=n, filtersNum=filtersNum) print('test loss', ((Y_test - regr.predict(X_test)) ** 2).mean()) # paras = [(1e4, 2500, 3), (300, 201, 10), (400, 600, 5), (600, 200, 8), # (2000, 3500, 13), (6000, 4000, 3), (8500, 6000, 2.75),] paras = [(1e4, 2500, 3),] f, db = filterModel(paras) plt.semilogx(f, db, label="target", color='red') y_pred = regr.predict([db]) f, db = filterModel(y_pred.reshape(filtersNum, 3)) plt.semilogx(f, db, label="NN") plt.legend() plt.show()
[ 11748, 16628, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 629, 541, 88, 13, 12683, 282, 1330, 2030, 80, 89, 201, 198, 6738, 1341, 35720, 13, 710, 1523, 62, 27349, 1330, 10373, 4805, 1533, 44292, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1303, 13610, 257, 4738, 27039, 201, 198, 220, 220, 220, 1303, 685, 16072, 11, 19484, 11, 4461, 60, 201, 198, 220, 220, 220, 299, 796, 1802, 201, 198, 220, 220, 220, 16628, 33111, 796, 352, 201, 198, 201, 198, 220, 220, 220, 1395, 11, 575, 796, 2429, 34278, 7, 77, 28, 77, 11, 16628, 33111, 28, 10379, 1010, 33111, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 25048, 20683, 2746, 201, 198, 220, 220, 220, 842, 81, 796, 10373, 4805, 1533, 44292, 7, 30342, 62, 29289, 62, 82, 4340, 16193, 940, 11, 828, 3509, 62, 2676, 28, 49388, 8, 201, 198, 220, 220, 220, 842, 81, 13, 11147, 7, 55, 11, 575, 8, 201, 198, 220, 220, 220, 3601, 10786, 27432, 2994, 3256, 842, 81, 13, 22462, 62, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 49461, 201, 198, 220, 220, 220, 1395, 62, 9288, 11, 575, 62, 9288, 796, 2429, 34278, 7, 77, 28, 77, 11, 16628, 33111, 28, 10379, 1010, 33111, 8, 201, 198, 220, 220, 220, 3601, 10786, 9288, 2994, 3256, 14808, 56, 62, 9288, 532, 842, 81, 13, 79, 17407, 7, 55, 62, 9288, 4008, 12429, 362, 737, 32604, 28955, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 17850, 796, 47527, 16, 68, 19, 11, 33507, 11, 513, 828, 357, 6200, 11, 580, 11, 838, 828, 357, 7029, 11, 10053, 11, 642, 828, 357, 8054, 11, 939, 11, 807, 828, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 11024, 11, 3439, 405, 11, 1511, 828, 357, 43434, 11, 30123, 11, 513, 828, 357, 23, 4059, 11, 39064, 11, 362, 13, 2425, 828, 60, 201, 198, 220, 220, 220, 17850, 796, 47527, 16, 68, 19, 11, 33507, 11, 513, 828, 60, 201, 198, 220, 220, 220, 277, 11, 20613, 796, 8106, 17633, 7, 1845, 292, 8, 201, 198, 220, 220, 220, 458, 83, 13, 325, 25433, 519, 87, 7, 69, 11, 20613, 11, 6167, 2625, 16793, 1600, 3124, 11639, 445, 11537, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 331, 62, 28764, 796, 842, 81, 13, 79, 17407, 26933, 9945, 12962, 220, 220, 220, 220, 201, 198, 220, 220, 220, 277, 11, 20613, 796, 8106, 17633, 7, 88, 62, 28764, 13, 3447, 1758, 7, 10379, 1010, 33111, 11, 513, 4008, 201, 198, 220, 220, 220, 458, 83, 13, 325, 25433, 519, 87, 7, 69, 11, 20613, 11, 6167, 2625, 6144, 4943, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419 ]
2.078998
519
import torch.distributed as dist import torch def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier()
[ 11748, 28034, 13, 17080, 6169, 355, 1233, 198, 11748, 28034, 198, 198, 4299, 18305, 1096, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 5053, 525, 2163, 284, 18305, 1096, 357, 5657, 5277, 8, 1871, 477, 7767, 618, 198, 220, 220, 220, 220, 220, 220, 1262, 9387, 3047, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 1233, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 611, 407, 1233, 13, 271, 62, 17532, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 995, 62, 7857, 796, 1233, 13, 1136, 62, 6894, 62, 7857, 3419, 198, 220, 220, 220, 611, 995, 62, 7857, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 1233, 13, 5657, 5277, 3419 ]
2.645833
144
import json import pymysql import datetime from dbutils.pooled_db import PooledDB import pymysql from conf.common import * mysql_client = MysqlClient()
[ 11748, 33918, 198, 11748, 279, 4948, 893, 13976, 198, 11748, 4818, 8079, 198, 6738, 288, 4360, 4487, 13, 7742, 276, 62, 9945, 1330, 19850, 276, 11012, 198, 11748, 279, 4948, 893, 13976, 198, 198, 6738, 1013, 13, 11321, 1330, 1635, 628, 198, 198, 28744, 13976, 62, 16366, 796, 337, 893, 13976, 11792, 3419, 198 ]
2.888889
54
#!/usr/bin/env python """ Script to launch a VDI session (or connect to already running session) and start a Jupyter server on the VDI A ssh tunnel from the local machine to the VDI is set up and the local webbrowser is spawned. This is a python3 script (uses unicode strings). If you don't have python3 on your local machine, try installing Miniconda3 The only external module is pexpect which may need to be installed using conda or pip. Usage: - if you use a password, the script will ask for your password when needed - if you have already set up SSH public key with Strudel, try running $ ssh-add ~/.ssh/MassiveLauncherKey to add your public key to the ssh key agent. Author: James Munroe, 2017 """ from __future__ import print_function import re import sys import time import getpass import pexpect import os import configparser # Requires future module https://pypi.org/project/future/ from builtins import input import argparse import logging logging.basicConfig(format='[%(asctime)s jupyter_vdi.py] %(message)s', datefmt='%H:%M:%S', level=logging.INFO) try: import appscript except ImportError: import webbrowser is_mac = False else: is_mac = True DEFAULTS = { 'user' : getpass.getuser(), 'JupyterPort' : '8889', 'BokehPort' : '8787', 'execHost' : 'vdi.nci.org.au' } verbose = 0 config_path = os.path.expanduser('~/cosima_cookbook.conf') parser = configparser.ConfigParser(defaults=DEFAULTS) if os.path.exists(config_path): logging.info('Using config file: {}'.format(config_path)) parser.read(config_path) else: logging.warn('No config file found. Creating default {} file.'.format(config_path)) logging.warn('*** Please edit this file as needed. ***') while DEFAULTS['user']==getpass.getuser() or DEFAULTS['user']=="": DEFAULTS['user']=input('What is your NCI username? ') parser = configparser.ConfigParser(defaults=DEFAULTS) with open(config_path, 'w') as f: parser.write(f) params = parser.defaults() def ssh(cmd, params, login_timeout=10): """ Run a remote command via SSH """ clean_params(params) cmd = ("ssh -x -l {user} {exechost} " + cmd).format(**params) if verbose > 0: logging.info(cmd) s = pexpect.spawn(cmd) # SSH pexpect logic taken from pxshh: i = s.expect(["(?i)are you sure you want to continue connecting", "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)connection closed by remote host", pexpect.EOF, pexpect.TIMEOUT], timeout=login_timeout) # First phase if i == 0: # New certificate -- always accept it. # This is what you get if SSH does not have the remote host's # public key stored in the 'known_hosts' cache. s.sendline("yes") i = s.expect(["(?i)are you sure you want to continue connecting", "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)connection closed by remote host", pexpect.EOF, pexpect.TIMEOUT], timeout=login_timeout) if i == 1: # password or passphrase if 'password' not in params: params['password'] = getpass.getpass('password: ') s.sendline(params['password']) i = s.expect(["(?i)are you sure you want to continue connecting", "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)connection closed by remote host", pexpect.EOF, pexpect.TIMEOUT], timeout=login_timeout) # TODO: check if ssh connection is successful return s def session(func, *args, **kwargs): """wrapper for sending session-ctl commands""" cmd = '/opt/vdi/bin/session-ctl --configver=20151620513 ' + func s = ssh(cmd, *args, **kwargs) s.close() return s tunnel_started = False tunnel = None if __name__ == "__main__": main_argv()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 7391, 284, 4219, 257, 569, 17931, 6246, 357, 273, 2018, 284, 1541, 2491, 6246, 8, 198, 392, 923, 257, 449, 929, 88, 353, 4382, 319, 262, 569, 17931, 198, 198, 32, 26678, 13275, 422, 262, 1957, 4572, 284, 262, 569, 17931, 318, 900, 510, 290, 262, 1957, 198, 732, 11848, 808, 2655, 318, 29013, 13, 198, 198, 1212, 318, 257, 21015, 18, 4226, 357, 2664, 28000, 1098, 13042, 737, 220, 1002, 345, 836, 470, 423, 198, 29412, 18, 319, 534, 1957, 4572, 11, 1949, 15975, 1855, 291, 13533, 18, 198, 464, 691, 7097, 8265, 318, 613, 87, 806, 543, 743, 761, 284, 307, 6589, 198, 3500, 1779, 64, 393, 7347, 13, 198, 198, 28350, 25, 198, 12, 611, 345, 779, 257, 9206, 11, 262, 4226, 481, 1265, 329, 534, 9206, 618, 2622, 198, 12, 611, 345, 423, 1541, 900, 510, 33825, 1171, 1994, 351, 4285, 463, 417, 11, 1949, 2491, 198, 220, 220, 220, 720, 26678, 12, 2860, 39763, 45824, 14, 20273, 425, 46182, 2044, 9218, 198, 220, 284, 751, 534, 1171, 1994, 284, 262, 26678, 1994, 5797, 13, 198, 198, 13838, 25, 3700, 12107, 20646, 11, 2177, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 651, 6603, 198, 11748, 613, 87, 806, 198, 11748, 28686, 198, 11748, 4566, 48610, 198, 2, 26848, 2003, 8265, 3740, 1378, 79, 4464, 72, 13, 2398, 14, 16302, 14, 37443, 14, 198, 6738, 3170, 1040, 1330, 5128, 198, 11748, 1822, 29572, 198, 198, 11748, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 58, 4, 7, 292, 310, 524, 8, 82, 474, 929, 88, 353, 62, 85, 10989, 13, 9078, 60, 4064, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 11639, 4, 39, 25, 4, 44, 25, 4, 50, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 10778, 8, 198, 28311, 25, 198, 220, 220, 220, 1330, 598, 12048, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 3992, 40259, 198, 220, 220, 220, 318, 62, 20285, 796, 10352, 198, 17772, 25, 198, 220, 220, 220, 318, 62, 20285, 796, 6407, 198, 198, 7206, 7708, 35342, 796, 1391, 198, 220, 220, 220, 705, 7220, 6, 1058, 651, 6603, 13, 1136, 7220, 22784, 198, 220, 220, 220, 705, 41, 929, 88, 353, 13924, 6, 1058, 705, 3459, 4531, 3256, 198, 220, 220, 220, 705, 33, 2088, 71, 13924, 6, 1058, 705, 23, 41019, 3256, 198, 220, 220, 220, 705, 18558, 17932, 6, 1058, 220, 705, 85, 10989, 13, 77, 979, 13, 2398, 13, 559, 6, 198, 92, 198, 198, 19011, 577, 796, 657, 198, 198, 11250, 62, 6978, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 14, 6966, 8083, 62, 27916, 2070, 13, 10414, 11537, 198, 48610, 796, 4566, 48610, 13, 16934, 46677, 7, 12286, 82, 28, 7206, 7708, 35342, 8, 198, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 11250, 62, 6978, 2599, 198, 220, 220, 220, 18931, 13, 10951, 10786, 12814, 4566, 2393, 25, 23884, 4458, 18982, 7, 11250, 62, 6978, 4008, 198, 220, 220, 220, 30751, 13, 961, 7, 11250, 62, 6978, 8, 198, 17772, 25, 198, 220, 220, 220, 18931, 13, 40539, 10786, 2949, 4566, 2393, 1043, 13, 30481, 4277, 23884, 2393, 2637, 13, 18982, 7, 11250, 62, 6978, 4008, 198, 220, 220, 220, 18931, 13, 40539, 10786, 8162, 4222, 4370, 428, 2393, 355, 2622, 13, 17202, 11537, 198, 220, 220, 220, 981, 5550, 7708, 35342, 17816, 7220, 20520, 855, 1136, 6603, 13, 1136, 7220, 3419, 393, 5550, 7708, 35342, 17816, 7220, 20520, 855, 1, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5550, 7708, 35342, 17816, 7220, 20520, 28, 15414, 10786, 2061, 318, 534, 8823, 40, 20579, 30, 705, 8, 198, 220, 220, 220, 30751, 796, 4566, 48610, 13, 16934, 46677, 7, 12286, 82, 28, 7206, 7708, 35342, 8, 628, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 13564, 7, 69, 8, 198, 198, 37266, 796, 30751, 13, 12286, 82, 3419, 198, 198, 4299, 26678, 7, 28758, 11, 42287, 11, 17594, 62, 48678, 28, 940, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 257, 6569, 3141, 2884, 33825, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3424, 62, 37266, 7, 37266, 8, 628, 220, 220, 220, 23991, 796, 5855, 45824, 532, 87, 532, 75, 1391, 7220, 92, 1391, 1069, 3055, 455, 92, 366, 1343, 23991, 737, 18982, 7, 1174, 37266, 8, 198, 220, 220, 220, 611, 15942, 577, 1875, 657, 25, 18931, 13, 10951, 7, 28758, 8, 198, 220, 220, 220, 264, 796, 613, 87, 806, 13, 48183, 7, 28758, 8, 628, 220, 220, 220, 1303, 33825, 613, 87, 806, 9156, 2077, 422, 279, 87, 1477, 71, 25, 198, 220, 220, 220, 1312, 796, 264, 13, 1069, 806, 7, 14692, 7, 30, 72, 8, 533, 345, 1654, 345, 765, 284, 2555, 14320, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 5769, 27514, 28712, 14726, 7, 27514, 6603, 34675, 329, 1994, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 525, 3411, 6699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 38659, 4838, 416, 6569, 2583, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 613, 87, 806, 13, 4720, 37, 11, 613, 87, 806, 13, 34694, 12425, 4357, 26827, 28, 38235, 62, 48678, 8, 628, 220, 220, 220, 1303, 3274, 7108, 198, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 968, 10703, 1377, 1464, 2453, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 644, 345, 651, 611, 33825, 857, 407, 423, 262, 6569, 2583, 338, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1171, 1994, 8574, 287, 262, 705, 4002, 62, 4774, 82, 6, 12940, 13, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13, 21280, 1370, 7203, 8505, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 264, 13, 1069, 806, 7, 14692, 7, 30, 72, 8, 533, 345, 1654, 345, 765, 284, 2555, 14320, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 5769, 27514, 28712, 14726, 7, 27514, 6603, 34675, 329, 1994, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 525, 3411, 6699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 38659, 4838, 416, 6569, 2583, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 613, 87, 806, 13, 4720, 37, 11, 613, 87, 806, 13, 34694, 12425, 4357, 26827, 28, 38235, 62, 48678, 8, 628, 220, 220, 220, 611, 1312, 6624, 352, 25, 220, 1303, 9206, 393, 1208, 34675, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 28712, 6, 407, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 28712, 20520, 796, 651, 6603, 13, 1136, 6603, 10786, 28712, 25, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 264, 13, 21280, 1370, 7, 37266, 17816, 28712, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 264, 13, 1069, 806, 7, 14692, 7, 30, 72, 8, 533, 345, 1654, 345, 765, 284, 2555, 14320, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 5769, 27514, 28712, 14726, 7, 27514, 6603, 34675, 329, 1994, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 525, 3411, 6699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 38659, 4838, 416, 6569, 2583, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 613, 87, 806, 13, 4720, 37, 11, 613, 87, 806, 13, 34694, 12425, 4357, 26827, 28, 38235, 62, 48678, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 2198, 611, 26678, 4637, 318, 4388, 628, 220, 220, 220, 1441, 264, 198, 198, 4299, 6246, 7, 20786, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 48553, 329, 7216, 6246, 12, 34168, 9729, 37811, 198, 220, 220, 220, 23991, 796, 31051, 8738, 14, 85, 10989, 14, 8800, 14, 29891, 12, 34168, 1377, 11250, 332, 28, 4626, 1433, 21261, 1485, 705, 1343, 25439, 198, 220, 220, 220, 264, 796, 26678, 7, 28758, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 264, 13, 19836, 3419, 198, 220, 220, 220, 1441, 264, 198, 198, 28286, 4954, 62, 46981, 796, 10352, 198, 28286, 4954, 796, 6045, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1388, 62, 853, 85, 3419, 198 ]
2.474803
1,647
# -*- coding=utf-8 -*- __all__ = [ 'tiny_imagenet', 'imagewoof2', 'imagenette2' ] import os import torch import torchvision _default_batch_size = 32 _default_num_workers = 4
[ 2, 532, 9, 12, 19617, 28, 40477, 12, 23, 532, 9, 12, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 44152, 62, 320, 11286, 316, 3256, 198, 220, 220, 220, 705, 48466, 413, 37711, 17, 3256, 198, 220, 220, 220, 705, 320, 11286, 5857, 17, 6, 198, 60, 198, 198, 11748, 28686, 198, 11748, 28034, 198, 11748, 28034, 10178, 198, 198, 62, 12286, 62, 43501, 62, 7857, 796, 3933, 198, 62, 12286, 62, 22510, 62, 22896, 796, 604, 628, 628, 198 ]
2.270588
85
from django.db import models from django.contrib.auth.models import User from django.db.models import Sum from datetime import datetime
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 5060, 198, 6738, 4818, 8079, 1330, 4818, 8079, 628, 198 ]
3.538462
39
#!/usr/bin/env pytest import io import json from os import path from pytest import fixture, mark from sls import App import storyscript.hub.Hub as StoryHub from storyhub.sdk.AutoUpdateThread import AutoUpdateThread from tests.e2e.utils.features import parse_options from tests.e2e.utils.fixtures import find_test_files, hub, test_dir test_files = find_test_files(relative=True) @fixture # compile a story and compare its completion with the expected tree # load a story from the file system and load its expected result file (.json) @mark.usefixtures("patched_storyhub") @mark.parametrize("test_file", test_files)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 12972, 9288, 198, 11748, 33245, 198, 11748, 33918, 198, 6738, 28686, 1330, 3108, 198, 198, 6738, 12972, 9288, 1330, 29220, 11, 1317, 198, 198, 6738, 1017, 82, 1330, 2034, 198, 198, 11748, 1621, 12048, 13, 40140, 13, 16066, 355, 8362, 16066, 198, 6738, 1621, 40140, 13, 21282, 74, 13, 27722, 10260, 16818, 1330, 11160, 10260, 16818, 628, 198, 6738, 5254, 13, 68, 17, 68, 13, 26791, 13, 40890, 1330, 21136, 62, 25811, 198, 6738, 5254, 13, 68, 17, 68, 13, 26791, 13, 69, 25506, 1330, 1064, 62, 9288, 62, 16624, 11, 12575, 11, 1332, 62, 15908, 628, 198, 9288, 62, 16624, 796, 1064, 62, 9288, 62, 16624, 7, 43762, 28, 17821, 8, 628, 198, 31, 69, 9602, 628, 198, 2, 17632, 257, 1621, 290, 8996, 663, 11939, 351, 262, 2938, 5509, 628, 198, 2, 3440, 257, 1621, 422, 262, 2393, 1080, 290, 3440, 663, 2938, 1255, 2393, 20262, 17752, 8, 628, 198, 31, 4102, 13, 1904, 69, 25506, 7203, 8071, 1740, 62, 13571, 40140, 4943, 198, 31, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 7753, 1600, 1332, 62, 16624, 8, 198 ]
3.310526
190
""" Where's My Mouse? """ import tkinter root = tkinter.Tk() root.bind('<Button>', mouse_click) root.mainloop()
[ 37811, 6350, 338, 2011, 21839, 30, 37227, 201, 198, 11748, 256, 74, 3849, 201, 198, 220, 220, 220, 220, 201, 198, 15763, 796, 256, 74, 3849, 13, 51, 74, 3419, 201, 198, 15763, 13, 21653, 10786, 27, 21864, 29, 3256, 10211, 62, 12976, 8, 201, 198, 15763, 13, 12417, 26268, 3419, 201, 198 ]
2.320755
53
from dataclasses import dataclass from enum import Enum from typing import Callable, Dict, Final, Optional, Type, Union from botx import Bot, Collector, Message from botx.concurrency import callable_to_coroutine from botx.middlewares.base import BaseMiddleware from botx.typing import Executor _default_transition: Final = object() @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 4889, 540, 11, 360, 713, 11, 8125, 11, 32233, 11, 5994, 11, 4479, 198, 198, 6738, 10214, 87, 1330, 18579, 11, 17573, 11, 16000, 198, 6738, 10214, 87, 13, 1102, 34415, 1330, 869, 540, 62, 1462, 62, 10215, 28399, 198, 6738, 10214, 87, 13, 27171, 86, 3565, 13, 8692, 1330, 7308, 34621, 1574, 198, 6738, 10214, 87, 13, 774, 13886, 1330, 8393, 38409, 198, 198, 62, 12286, 62, 7645, 653, 25, 8125, 796, 2134, 3419, 628, 198, 31, 19608, 330, 31172, 628, 628, 198 ]
3.441176
102
#!/usr/bin/env python ''' This program attempts to convert XPLOR Pseudocontact shift restraints in AMBER format XPLOR: assign ( resid 200 and name OO ) ( resid 200 and name Z ) ( resid 200 and name X ) (resid 200 and name Y ) ( resid 13 and name C ) 0.2400 0.2000 assign ( resid 200 and name OO ) ( resid 200 and name Z ) ( resid 200 and name X ) ( resid 200 and name Y ) ( resid 13 and name CA ) 0.4300 0.2000 assign ( resid 200 and name OO ) ( resid 200 and name Z ) ( resid 200 and name X ) ( resid 200 and name Y )( resid 13 and name CB ) 0.1000 0.2000 AMBER: &align num_datasets=2, dcut= -1.0, freezemol= .false., ndip= 10, dwt= 5*0.1, 5*0.1 gigj= 5*-3.1631,5*-3.1631, dij= 5*1.041,5*1.041, s11= -4.236,-4.236 s12= 56.860,56.860 s13= -34.696,-34.696 s22= -27.361,-27.361 s23= -12.867,-12.867 dataset=1, id(1)=20, jd(1)=19, dobsl(1)=-2.13, dobsu(1)=-2.13, id(2)=31, jd(2)=30, dobsl(2)= 1.10, dobsu(2)= 1.10, id(3)=43, jd(3)=42, dobsl(3)=-5.54, dobsu(3)=-5.54, ... ... &end ''' import sys import os import commands from optparse import OptionParser from xml_parser import * from normalize_tbl import normalize from constants import convtable if __name__ == '__main__': usage = "usage: %prog -w working_directory -p pdb_filename -o out_filename" parser = OptionParser(usage) parser.add_option("-w", "--wdir", dest="wd", help="Working directory", metavar="WORKDIR") parser.add_option("-p", "--pdbfile", dest="pdbfile", help="PDB filename", metavar="FILE") parser.add_option("-o", "--outfile", dest="outfile", help="Output filename", metavar="FILE") (options, args) = parser.parse_args() if not options.wd: parser.error("Working directory is required") wd=os.path.abspath(options.wd)+'/' if options.pdbfile: pdbfile=os.path.join(wd, options.pdbfile) else: parser.error("PDB filename is required") if options.outfile: outfile=os.path.join(wd, options.outfile) else: parser.error("Output filename is required") xml_input=os.path.join(wd,'input.xml') doc = etree.parse(xml_input) ndoc = etree.tostring(doc) new=parse_node(etree.fromstring(ndoc)) out=convert(pdbfile, new, wd) fout=open(outfile,'w') fout.writelines(out) fout.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 1212, 1430, 6370, 284, 10385, 1395, 6489, 1581, 49693, 463, 420, 756, 529, 6482, 45369, 287, 3001, 13246, 5794, 198, 55, 6489, 1581, 25, 198, 562, 570, 357, 15384, 939, 220, 290, 1438, 440, 46, 1267, 357, 15384, 939, 220, 290, 1438, 1168, 1267, 357, 15384, 939, 220, 290, 1438, 1395, 1267, 357, 411, 312, 939, 220, 290, 1438, 575, 1267, 357, 15384, 220, 1511, 220, 290, 1438, 327, 1267, 220, 220, 657, 13, 1731, 405, 220, 657, 13, 11024, 220, 198, 562, 570, 357, 15384, 939, 220, 290, 1438, 440, 46, 1267, 357, 15384, 939, 220, 290, 1438, 1168, 1267, 357, 15384, 939, 220, 290, 1438, 1395, 1267, 357, 15384, 939, 220, 290, 1438, 575, 1267, 357, 15384, 220, 1511, 220, 290, 1438, 7257, 1267, 657, 13, 3559, 405, 220, 657, 13, 11024, 220, 198, 562, 570, 357, 15384, 939, 220, 290, 1438, 440, 46, 1267, 357, 15384, 939, 220, 290, 1438, 1168, 1267, 357, 15384, 939, 220, 290, 1438, 1395, 1267, 357, 220, 15384, 939, 220, 290, 1438, 575, 1267, 7, 15384, 220, 1511, 220, 290, 1438, 10078, 1267, 657, 13, 12825, 220, 657, 13, 11024, 220, 628, 198, 2390, 13246, 25, 198, 5, 31494, 198, 22510, 62, 19608, 292, 1039, 28, 17, 11, 198, 220, 220, 288, 8968, 28, 532, 16, 13, 15, 11, 1479, 89, 368, 349, 28, 764, 9562, 1539, 628, 220, 220, 299, 67, 541, 28, 838, 11, 43756, 83, 28, 642, 9, 15, 13, 16, 11, 642, 9, 15, 13, 16, 198, 220, 220, 12526, 73, 28, 642, 9, 12, 18, 13, 1433, 3132, 11, 20, 9, 12, 18, 13, 1433, 3132, 11, 198, 220, 220, 2566, 73, 28, 642, 9, 16, 13, 50049, 11, 20, 9, 16, 13, 50049, 11, 198, 220, 264, 1157, 28, 532, 19, 13, 24940, 12095, 19, 13, 24940, 198, 220, 264, 1065, 28, 7265, 13, 45039, 11, 3980, 13, 45039, 198, 220, 264, 1485, 28, 532, 2682, 13, 38205, 12095, 2682, 13, 38205, 198, 220, 264, 1828, 28, 532, 1983, 13, 35195, 12095, 1983, 13, 35195, 198, 220, 264, 1954, 28, 532, 1065, 13, 23, 3134, 12095, 1065, 13, 23, 3134, 198, 220, 220, 198, 220, 27039, 28, 16, 11, 198, 220, 220, 4686, 7, 16, 47505, 1238, 11, 474, 67, 7, 16, 47505, 1129, 11, 466, 1443, 75, 7, 16, 8, 10779, 17, 13, 1485, 11, 466, 1443, 84, 7, 16, 8, 10779, 17, 13, 1485, 11, 198, 220, 220, 4686, 7, 17, 47505, 3132, 11, 474, 67, 7, 17, 47505, 1270, 11, 466, 1443, 75, 7, 17, 47505, 352, 13, 940, 11, 466, 1443, 84, 7, 17, 47505, 352, 13, 940, 11, 198, 220, 220, 4686, 7, 18, 47505, 3559, 11, 474, 67, 7, 18, 47505, 3682, 11, 466, 1443, 75, 7, 18, 8, 10779, 20, 13, 4051, 11, 466, 1443, 84, 7, 18, 8, 10779, 20, 13, 4051, 11, 198, 220, 220, 2644, 198, 220, 220, 2644, 198, 5, 437, 198, 7061, 6, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 9729, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 6738, 35555, 62, 48610, 1330, 1635, 198, 6738, 3487, 1096, 62, 83, 2436, 1330, 3487, 1096, 198, 6738, 38491, 1330, 3063, 11487, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 198, 220, 220, 220, 8748, 796, 366, 26060, 25, 4064, 1676, 70, 532, 86, 1762, 62, 34945, 220, 532, 79, 279, 9945, 62, 34345, 532, 78, 503, 62, 34345, 1, 198, 220, 220, 198, 220, 220, 220, 30751, 796, 16018, 46677, 7, 26060, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 86, 1600, 366, 438, 86, 15908, 1600, 2244, 2625, 16993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 28516, 8619, 1600, 1138, 615, 283, 2625, 33249, 34720, 4943, 198, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 79, 1600, 366, 438, 79, 9945, 7753, 1600, 2244, 2625, 79, 9945, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5760, 33, 29472, 1600, 1138, 615, 283, 2625, 25664, 4943, 198, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 78, 1600, 366, 438, 448, 7753, 1600, 2244, 2625, 448, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26410, 29472, 1600, 1138, 615, 283, 2625, 25664, 4943, 198, 220, 220, 198, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 3689, 13, 16993, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 28516, 8619, 318, 2672, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 266, 67, 28, 418, 13, 6978, 13, 397, 2777, 776, 7, 25811, 13, 16993, 47762, 26488, 6, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3689, 13, 79, 9945, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 7753, 28, 418, 13, 6978, 13, 22179, 7, 16993, 11, 3689, 13, 79, 9945, 7753, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 5760, 33, 29472, 318, 2672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3689, 13, 448, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 28, 418, 13, 6978, 13, 22179, 7, 16993, 11, 3689, 13, 448, 7753, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 26410, 29472, 318, 2672, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 35555, 62, 15414, 28, 418, 13, 6978, 13, 22179, 7, 16993, 4032, 15414, 13, 19875, 11537, 198, 220, 220, 220, 2205, 796, 2123, 631, 13, 29572, 7, 19875, 62, 15414, 8, 198, 220, 220, 220, 299, 15390, 796, 2123, 631, 13, 83, 455, 1806, 7, 15390, 8, 198, 220, 220, 220, 649, 28, 29572, 62, 17440, 7, 316, 631, 13, 6738, 8841, 7, 358, 420, 4008, 198, 220, 220, 220, 503, 28, 1102, 1851, 7, 79, 9945, 7753, 11, 649, 11, 266, 67, 8, 198, 220, 220, 220, 277, 448, 28, 9654, 7, 448, 7753, 4032, 86, 11537, 198, 220, 220, 220, 277, 448, 13, 8933, 20655, 7, 448, 8, 198, 220, 220, 220, 277, 448, 13, 19836, 3419 ]
2.166078
1,132
"""Versioned body readers and writers for track message bodies. Attributes: LATEST_VERSION (int): Latest version supported by the library. """ from typing import Callable, Tuple from . import TrackInfo, codec LATEST_VERSION = 2 ReaderType = Callable[[codec.Reader], TrackInfo] WriterType = Callable[[codec.Writer, TrackInfo], None] _FORMAT_VERSIONS = { 1: (read_body_v1, write_body_v1), 2: (read_body_v2, write_body_v2), } def get_reader(version: int) -> ReaderType: """Get a body reader for the given version. Raises: ValueError: If the version isn't supported. """ return _get_format(version)[0] def get_writer(version: int) -> WriterType: """Get a body writer for the given version. Raises: ValueError: If the version isn't supported. """ return _get_format(version)[1]
[ 37811, 14815, 276, 1767, 7183, 290, 8786, 329, 2610, 3275, 5920, 13, 198, 198, 29021, 25, 198, 220, 220, 220, 42355, 6465, 62, 43717, 357, 600, 2599, 26603, 2196, 4855, 416, 262, 5888, 13, 198, 37811, 198, 198, 6738, 19720, 1330, 4889, 540, 11, 309, 29291, 198, 198, 6738, 764, 1330, 17762, 12360, 11, 40481, 198, 198, 43, 1404, 6465, 62, 43717, 796, 362, 628, 628, 628, 628, 198, 33634, 6030, 796, 4889, 540, 30109, 19815, 721, 13, 33634, 4357, 17762, 12360, 60, 198, 34379, 6030, 796, 4889, 540, 30109, 19815, 721, 13, 34379, 11, 17762, 12360, 4357, 6045, 60, 198, 198, 62, 21389, 1404, 62, 28884, 11053, 796, 1391, 198, 220, 220, 220, 352, 25, 357, 961, 62, 2618, 62, 85, 16, 11, 3551, 62, 2618, 62, 85, 16, 828, 198, 220, 220, 220, 362, 25, 357, 961, 62, 2618, 62, 85, 17, 11, 3551, 62, 2618, 62, 85, 17, 828, 198, 92, 628, 198, 198, 4299, 651, 62, 46862, 7, 9641, 25, 493, 8, 4613, 25342, 6030, 25, 198, 220, 220, 220, 37227, 3855, 257, 1767, 9173, 329, 262, 1813, 2196, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1002, 262, 2196, 2125, 470, 4855, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 1136, 62, 18982, 7, 9641, 38381, 15, 60, 628, 198, 4299, 651, 62, 16002, 7, 9641, 25, 493, 8, 4613, 26606, 6030, 25, 198, 220, 220, 220, 37227, 3855, 257, 1767, 6260, 329, 262, 1813, 2196, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1002, 262, 2196, 2125, 470, 4855, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 1136, 62, 18982, 7, 9641, 38381, 16, 60, 198 ]
2.824503
302
/home/runner/.cache/pip/pool/f3/de/85/7dca1e096a43e00e6ff1ca900dda1ca91c8c5c3a1d6798e466a9173a00
[ 14, 11195, 14, 16737, 11757, 23870, 14, 79, 541, 14, 7742, 14, 69, 18, 14, 2934, 14, 5332, 14, 22, 67, 6888, 16, 68, 2931, 21, 64, 3559, 68, 405, 68, 21, 487, 16, 6888, 12865, 1860, 64, 16, 6888, 6420, 66, 23, 66, 20, 66, 18, 64, 16, 67, 3134, 4089, 68, 42199, 64, 24, 25399, 64, 405 ]
1.627119
59
""" The Alarm Extension provides easy access to setting an application alarm to handle timing out operations. See the `Python Signal Library <https://docs.python.org/3.5/library/signal.html>`_. Requirements ------------ * No external dependencies. * Only available on Unix/Linux Configuration ------------- This extension does not honor any application configuration settings. Usage ----- .. code-block:: python import time from cement.core.foundation import CementApp from cement.core.exc import CaughtSignal class MyApp(CementApp): class Meta: label = 'myapp' exit_on_close = True extensions = ['alarm'] with MyApp() as app: try: app.run() app.alarm.set(3, "The operation timed out after 3 seconds!") # do something that takes time to operate time.sleep(5) app.alarm.stop() except CaughtSignal as e: print(e.msg) app.exit_code = 1 Looks like: .. code-block:: console $ python myapp.py ERROR: The operation timed out after 3 seconds! Caught signal 14 """ import signal from ..utils.misc import minimal_logger LOG = minimal_logger(__name__) class AlarmManager(object): """ Lets the developer easily set and stop an alarm. If the alarm exceeds the given time it will raise ``signal.SIGALRM``. """ def set(self, time, msg): """ Set the application alarm to ``time`` seconds. If the time is exceeded ``signal.SIGALRM`` is raised. :param time: The time in seconds to set the alarm to. :param msg: The message to display if the alarm is triggered. """ LOG.debug('setting application alarm for %s seconds' % time) self.msg = msg signal.alarm(int(time)) def stop(self): """ Stop the application alarm. """ LOG.debug('stopping application alarm') signal.alarm(0)
[ 37811, 198, 464, 978, 1670, 27995, 3769, 2562, 1895, 284, 4634, 281, 3586, 10436, 284, 198, 28144, 10576, 503, 4560, 13, 220, 4091, 262, 198, 63, 37906, 26484, 10074, 1279, 5450, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 20, 14, 32016, 14, 12683, 282, 13, 6494, 29, 63, 44807, 198, 198, 42249, 198, 10541, 628, 1635, 1400, 7097, 20086, 13, 198, 1635, 5514, 1695, 319, 33501, 14, 19314, 628, 198, 38149, 198, 32501, 198, 198, 1212, 7552, 857, 407, 7522, 597, 3586, 8398, 6460, 13, 628, 198, 28350, 198, 30934, 198, 198, 492, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 1330, 640, 198, 220, 220, 220, 422, 20534, 13, 7295, 13, 42526, 1330, 327, 972, 4677, 198, 220, 220, 220, 422, 20534, 13, 7295, 13, 41194, 1330, 327, 3413, 11712, 282, 628, 198, 220, 220, 220, 1398, 2011, 4677, 7, 34, 972, 4677, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 30277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 705, 1820, 1324, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 62, 261, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 796, 37250, 282, 1670, 20520, 628, 198, 220, 220, 220, 351, 2011, 4677, 3419, 355, 598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 5143, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 282, 1670, 13, 2617, 7, 18, 11, 366, 464, 4905, 28805, 503, 706, 513, 4201, 2474, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 1223, 326, 2753, 640, 284, 8076, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 20, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 282, 1670, 13, 11338, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 327, 3413, 11712, 282, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 13, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 37023, 62, 8189, 796, 352, 198, 198, 41102, 588, 25, 198, 198, 492, 2438, 12, 9967, 3712, 8624, 628, 220, 220, 220, 720, 21015, 616, 1324, 13, 9078, 198, 220, 220, 220, 33854, 25, 383, 4905, 28805, 503, 706, 513, 4201, 0, 198, 220, 220, 220, 327, 3413, 6737, 1478, 198, 198, 37811, 198, 198, 11748, 6737, 198, 6738, 11485, 26791, 13, 44374, 1330, 10926, 62, 6404, 1362, 198, 198, 25294, 796, 10926, 62, 6404, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 4871, 978, 1670, 13511, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38257, 262, 8517, 3538, 900, 290, 2245, 281, 10436, 13, 220, 1002, 262, 198, 220, 220, 220, 10436, 21695, 262, 1813, 640, 340, 481, 5298, 7559, 12683, 282, 13, 50, 3528, 1847, 29138, 15506, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 7, 944, 11, 640, 11, 31456, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3586, 10436, 284, 7559, 2435, 15506, 4201, 13, 220, 1002, 262, 640, 318, 198, 220, 220, 220, 220, 220, 220, 220, 20672, 7559, 12683, 282, 13, 50, 3528, 1847, 29138, 15506, 318, 4376, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 640, 25, 383, 640, 287, 4201, 284, 900, 262, 10436, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 31456, 25, 383, 3275, 284, 3359, 611, 262, 10436, 318, 13973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 33990, 3586, 10436, 329, 4064, 82, 4201, 6, 4064, 640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 13, 282, 1670, 7, 600, 7, 2435, 4008, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 262, 3586, 10436, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 301, 33307, 3586, 10436, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 13, 282, 1670, 7, 15, 8, 628 ]
2.591203
773
from meross_iot.cloud.abilities import * from meross_iot.cloud.device import AbstractMerossDevice from meross_iot.logger import POWER_PLUGS_LOGGER as l from meross_iot.meross_event import DeviceSwitchStatusEvent
[ 6738, 4017, 793, 62, 5151, 13, 17721, 13, 5738, 1330, 1635, 198, 6738, 4017, 793, 62, 5151, 13, 17721, 13, 25202, 1330, 27741, 13102, 793, 24728, 198, 6738, 4017, 793, 62, 5151, 13, 6404, 1362, 1330, 40295, 62, 6489, 7340, 50, 62, 25294, 30373, 355, 300, 198, 6738, 4017, 793, 62, 5151, 13, 647, 793, 62, 15596, 1330, 16232, 38978, 19580, 9237, 628 ]
3.380952
63
from django.db.backends.mysql.introspection import * from django.db.backends.mysql.introspection import DatabaseIntrospection as MYSQLDatabaseIntrospection from django.utils.functional import cached_property
[ 6738, 42625, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 13, 600, 305, 31308, 1330, 1635, 198, 6738, 42625, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 13, 600, 305, 31308, 1330, 24047, 5317, 305, 31308, 355, 337, 16309, 9711, 38105, 5317, 305, 31308, 198, 6738, 42625, 14208, 13, 26791, 13, 45124, 1330, 39986, 62, 26745, 628, 628 ]
3.516667
60
import highiq import numpy as np
[ 11748, 1029, 25011, 198, 11748, 299, 32152, 355, 45941, 628, 628, 628 ]
3.166667
12
# Base imports import subprocess from typing import Iterable, Optional # Project imports from docker import common from docker.run import run
[ 2, 7308, 17944, 198, 11748, 850, 14681, 198, 6738, 19720, 1330, 40806, 540, 11, 32233, 198, 198, 2, 4935, 17944, 198, 6738, 36253, 1330, 2219, 198, 6738, 36253, 13, 5143, 1330, 1057, 628, 198 ]
4.264706
34
import json import glob import numpy as np import os path = "data_state_space_v3/" out_path = "small_data/" files = glob.glob(path + "*.npy") # ワイルドカードが使用可能 train_data_num = 100 test_data_num = 10 train_data = {} test_data = {} for filename in files: obj = np.load(filename) if filename.find("_test.npy") >= 0: test_data[filename] = obj else: train_data[filename] = obj os.makedirs(out_path, exist_ok=True) for k, v in train_data.items(): b = os.path.basename(k) print(b, v.shape) o = v[:train_data_num] np.save(out_path + b, o) for k, v in test_data.items(): b = os.path.basename(k) print(b, v.shape) o = v[:test_data_num] np.save(out_path + b, o) fp = open(path + "pack_selected_info.json") obj = json.load(fp) obj["pid_list_train"] = obj["pid_list_train"][:train_data_num] obj["pid_list_test"] = obj["pid_list_test"][:test_data_num] fp = open(out_path + "pack_selected_info.json", "w") json.dump(obj, fp)
[ 11748, 33918, 198, 11748, 15095, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 198, 6978, 796, 366, 7890, 62, 5219, 62, 13200, 62, 85, 18, 30487, 198, 448, 62, 6978, 796, 366, 17470, 62, 7890, 30487, 198, 16624, 796, 15095, 13, 4743, 672, 7, 6978, 1343, 366, 24620, 77, 9078, 4943, 220, 1303, 14524, 107, 11482, 9202, 13765, 21763, 12045, 231, 35585, 45635, 18796, 101, 20998, 107, 47797, 121, 198, 27432, 62, 7890, 62, 22510, 796, 1802, 198, 9288, 62, 7890, 62, 22510, 796, 838, 198, 27432, 62, 7890, 796, 23884, 198, 9288, 62, 7890, 796, 23884, 198, 1640, 29472, 287, 3696, 25, 198, 220, 220, 220, 26181, 796, 45941, 13, 2220, 7, 34345, 8, 198, 220, 220, 220, 611, 29472, 13, 19796, 7203, 62, 9288, 13, 77, 9078, 4943, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 58, 34345, 60, 796, 26181, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 58, 34345, 60, 796, 26181, 198, 418, 13, 76, 4335, 17062, 7, 448, 62, 6978, 11, 2152, 62, 482, 28, 17821, 8, 198, 1640, 479, 11, 410, 287, 4512, 62, 7890, 13, 23814, 33529, 198, 220, 220, 220, 275, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 74, 8, 198, 220, 220, 220, 3601, 7, 65, 11, 410, 13, 43358, 8, 198, 220, 220, 220, 267, 796, 410, 58, 25, 27432, 62, 7890, 62, 22510, 60, 198, 220, 220, 220, 45941, 13, 21928, 7, 448, 62, 6978, 1343, 275, 11, 267, 8, 198, 198, 1640, 479, 11, 410, 287, 1332, 62, 7890, 13, 23814, 33529, 198, 220, 220, 220, 275, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 74, 8, 198, 220, 220, 220, 3601, 7, 65, 11, 410, 13, 43358, 8, 198, 220, 220, 220, 267, 796, 410, 58, 25, 9288, 62, 7890, 62, 22510, 60, 198, 220, 220, 220, 45941, 13, 21928, 7, 448, 62, 6978, 1343, 275, 11, 267, 8, 198, 46428, 796, 1280, 7, 6978, 1343, 366, 8002, 62, 34213, 62, 10951, 13, 17752, 4943, 198, 26801, 796, 33918, 13, 2220, 7, 46428, 8, 198, 26801, 14692, 35317, 62, 4868, 62, 27432, 8973, 796, 26181, 14692, 35317, 62, 4868, 62, 27432, 1, 7131, 25, 27432, 62, 7890, 62, 22510, 60, 198, 26801, 14692, 35317, 62, 4868, 62, 9288, 8973, 796, 26181, 14692, 35317, 62, 4868, 62, 9288, 1, 7131, 25, 9288, 62, 7890, 62, 22510, 60, 198, 46428, 796, 1280, 7, 448, 62, 6978, 1343, 366, 8002, 62, 34213, 62, 10951, 13, 17752, 1600, 366, 86, 4943, 198, 17752, 13, 39455, 7, 26801, 11, 277, 79, 8, 198 ]
2.206818
440
# https://www.hackerrank.com/challenges/three-month-preparation-kit-maxsubarray/problem #!/bin/python3 import math import os import random import re import sys # # Complete the 'maxSubarray' function below. # # The function is expected to return an INTEGER_ARRAY. # The function accepts INTEGER_ARRAY arr as parameter. # if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') t = int(input().strip()) for t_itr in range(t): n = int(input().strip()) arr = list(map(int, input().rstrip().split())) result = maxSubarray(arr) fptr.write(' '.join(map(str, result))) fptr.write('\n') fptr.close()
[ 2, 3740, 1378, 2503, 13, 31153, 8056, 962, 13, 785, 14, 36747, 34120, 14, 15542, 12, 8424, 12, 3866, 1845, 341, 12, 15813, 12, 9806, 7266, 18747, 14, 45573, 198, 198, 2, 48443, 8800, 14, 29412, 18, 198, 198, 11748, 10688, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 302, 198, 11748, 25064, 198, 198, 2, 198, 2, 13248, 262, 705, 9806, 7004, 18747, 6, 2163, 2174, 13, 198, 2, 198, 2, 383, 2163, 318, 2938, 284, 1441, 281, 17828, 7156, 1137, 62, 1503, 30631, 13, 198, 2, 383, 2163, 18178, 17828, 7156, 1137, 62, 1503, 30631, 5240, 355, 11507, 13, 198, 2, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 277, 20692, 796, 1280, 7, 418, 13, 268, 2268, 17816, 2606, 7250, 3843, 62, 34219, 6, 4357, 705, 86, 11537, 628, 220, 220, 220, 256, 796, 493, 7, 15414, 22446, 36311, 28955, 628, 220, 220, 220, 329, 256, 62, 270, 81, 287, 2837, 7, 83, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 493, 7, 15414, 22446, 36311, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 81, 36311, 22446, 35312, 3419, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3509, 7004, 18747, 7, 3258, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 20692, 13, 13564, 10786, 45302, 22179, 7, 8899, 7, 2536, 11, 1255, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20692, 13, 13564, 10786, 59, 77, 11537, 628, 220, 220, 220, 277, 20692, 13, 19836, 3419 ]
2.507463
268
import torch from torch.nn.modules.module import Module from torch.autograd import Function import correlation_cuda
[ 11748, 28034, 198, 6738, 28034, 13, 20471, 13, 18170, 13, 21412, 1330, 19937, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 15553, 198, 11748, 16096, 62, 66, 15339, 628 ]
4.034483
29
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import data_flow_ops import tensorflow.contrib.tensorrt as trt import numpy as np import time from tensorflow.python.platform import gfile from tensorflow.python.client import timeline import argparse, sys, itertools,datetime import json tf.logging.set_verbosity(tf.logging.INFO) import os from utils import * #main if "__main__" in __name__: P=argparse.ArgumentParser(prog="trt_convert") P.add_argument('--FP32',action='store_true') P.add_argument('--FP16',action='store_true') P.add_argument('--INT8',action='store_true') P.add_argument('--input_file',type=str) P.add_argument('--input_path_calibration',type=str,default='./',help="path to read input files from for calibration mode") P.add_argument('--output_prefix',type=str) P.add_argument('--batch_size',type=int, default=32) P.add_argument('--num_calibration_runs',type=int, default=10) P.add_argument('--workspace_size',type=int, default=1<<20,help="workspace size in MB") P.add_argument('--gpu', type=int, default=0) #P.add_argument('--update_graphdef',action='store_true') #parse args f,unparsed=P.parse_known_args() #select the GPU os.environ["CUDA_VISIBLE_DEVICES"]=str(f.gpu) #selects a specific device #create a session just in case sess = tf.Session() #print graph print_graph(f.input_file) #do the conversion if f.FP32: getFP32(input_file=f.input_file, output_prefix=f.output_prefix, output=["Softmax"], batch_size=f.batch_size, workspace_size=f.workspace_size) if f.FP16: getFP16(input_file=f.input_file, output_prefix=f.output_prefix, output=["Softmax"], batch_size=f.batch_size, workspace_size=f.workspace_size) if f.INT8: calibGraph = getINT8CalibGraph(input_file=f.input_file, output_prefix=f.output_prefix, output=["Softmax"], batch_size=f.batch_size, workspace_size=f.workspace_size) print('Calibrating Graph...') #run graph runGraph(calibGraph, f.batch_size, f.num_calibration_runs, "Placeholder", ["Softmax"], dtype=np.float32, input_data=f.input_path_calibration) print('done...') #get int8 graph getINT8InferenceGraph(output_prefix=f.output_prefix, calibGraph=calibGraph) sys.exit(0)
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 1366, 62, 11125, 62, 2840, 198, 11748, 11192, 273, 11125, 13, 3642, 822, 13, 83, 22854, 17034, 355, 491, 83, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 308, 7753, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 16366, 1330, 15264, 198, 11748, 1822, 29572, 11, 25064, 11, 340, 861, 10141, 11, 19608, 8079, 198, 11748, 33918, 198, 27110, 13, 6404, 2667, 13, 2617, 62, 19011, 16579, 7, 27110, 13, 6404, 2667, 13, 10778, 8, 198, 198, 11748, 28686, 198, 198, 6738, 3384, 4487, 1330, 1635, 198, 198, 2, 12417, 198, 361, 366, 834, 12417, 834, 1, 287, 11593, 3672, 834, 25, 198, 220, 220, 198, 220, 350, 28, 853, 29572, 13, 28100, 1713, 46677, 7, 1676, 70, 2625, 2213, 83, 62, 1102, 1851, 4943, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 5837, 2624, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 5837, 1433, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 12394, 23, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 7753, 3256, 4906, 28, 2536, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 6978, 62, 9948, 571, 1358, 3256, 4906, 28, 2536, 11, 12286, 28, 4458, 14, 3256, 16794, 2625, 6978, 284, 1100, 5128, 3696, 422, 329, 36537, 4235, 4943, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 22915, 62, 40290, 3256, 4906, 28, 2536, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 43501, 62, 7857, 3256, 4906, 28, 600, 11, 4277, 28, 2624, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 9948, 571, 1358, 62, 48381, 3256, 4906, 28, 600, 11, 4277, 28, 940, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 5225, 10223, 62, 7857, 3256, 4906, 28, 600, 11, 4277, 28, 16, 16791, 1238, 11, 16794, 2625, 5225, 10223, 2546, 287, 10771, 4943, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 46999, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 1303, 47, 13, 2860, 62, 49140, 10786, 438, 19119, 62, 34960, 4299, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 198, 220, 1303, 29572, 26498, 198, 220, 277, 11, 403, 79, 945, 276, 28, 47, 13, 29572, 62, 4002, 62, 22046, 3419, 198, 220, 220, 198, 220, 1303, 19738, 262, 11362, 198, 220, 28686, 13, 268, 2268, 14692, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 8973, 28, 2536, 7, 69, 13, 46999, 8, 1303, 19738, 82, 257, 2176, 3335, 628, 220, 1303, 17953, 257, 6246, 655, 287, 1339, 198, 220, 264, 408, 796, 48700, 13, 36044, 3419, 628, 220, 1303, 4798, 4823, 198, 220, 3601, 62, 34960, 7, 69, 13, 15414, 62, 7753, 8, 198, 220, 220, 198, 220, 1303, 4598, 262, 11315, 198, 220, 611, 277, 13, 5837, 2624, 25, 198, 220, 220, 220, 651, 5837, 2624, 7, 15414, 62, 7753, 28, 69, 13, 15414, 62, 7753, 11, 5072, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 5072, 28, 14692, 18380, 9806, 33116, 15458, 62, 7857, 28, 69, 13, 43501, 62, 7857, 11, 44573, 62, 7857, 28, 69, 13, 5225, 10223, 62, 7857, 8, 198, 220, 611, 277, 13, 5837, 1433, 25, 198, 220, 220, 220, 651, 5837, 1433, 7, 15414, 62, 7753, 28, 69, 13, 15414, 62, 7753, 11, 5072, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 5072, 28, 14692, 18380, 9806, 33116, 15458, 62, 7857, 28, 69, 13, 43501, 62, 7857, 11, 44573, 62, 7857, 28, 69, 13, 5225, 10223, 62, 7857, 8, 198, 220, 611, 277, 13, 12394, 23, 25, 198, 220, 220, 220, 27417, 37065, 796, 651, 12394, 23, 9771, 571, 37065, 7, 15414, 62, 7753, 28, 69, 13, 15414, 62, 7753, 11, 5072, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 5072, 28, 14692, 18380, 9806, 33116, 15458, 62, 7857, 28, 69, 13, 43501, 62, 7857, 11, 44573, 62, 7857, 28, 69, 13, 5225, 10223, 62, 7857, 8, 198, 220, 220, 220, 3601, 10786, 9771, 2889, 803, 29681, 986, 11537, 198, 220, 220, 220, 1303, 5143, 4823, 198, 220, 220, 220, 1057, 37065, 7, 9948, 571, 37065, 11, 277, 13, 43501, 62, 7857, 11, 277, 13, 22510, 62, 9948, 571, 1358, 62, 48381, 11, 366, 27271, 13829, 1600, 14631, 18380, 9806, 33116, 288, 4906, 28, 37659, 13, 22468, 2624, 11, 5128, 62, 7890, 28, 69, 13, 15414, 62, 6978, 62, 9948, 571, 1358, 8, 198, 220, 220, 220, 3601, 10786, 28060, 986, 11537, 198, 220, 220, 220, 1303, 1136, 493, 23, 4823, 198, 220, 220, 220, 651, 12394, 23, 818, 4288, 37065, 7, 22915, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 27417, 37065, 28, 9948, 571, 37065, 8, 198, 220, 220, 220, 220, 198, 220, 25064, 13, 37023, 7, 15, 8, 198 ]
2.707317
861
import Adafruit_SSD1306 import Image import ImageDraw import ImageFont # I2C ADDRESS / BITS SSD1306_ADDRESS = 0x3C
[ 11748, 1215, 1878, 4872, 62, 5432, 35, 12952, 21, 198, 11748, 7412, 198, 11748, 7412, 25302, 198, 11748, 7412, 23252, 198, 198, 2, 314, 17, 34, 5984, 7707, 7597, 1220, 347, 29722, 198, 5432, 35, 12952, 21, 62, 2885, 7707, 7597, 796, 657, 87, 18, 34, 628 ]
2.489362
47
if __name__ == '__main__': print compute(1, 0.1) # default values
[ 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 24061, 7, 16, 11, 657, 13, 16, 8, 1303, 4277, 3815, 628 ]
2.571429
28
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from ..optimization import discretization from ..common.decorators import Registry registry = Registry() @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register def lunacek(x: np.ndarray) -> float: """ Based on https://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/lunacek.html.""" problemDimensions = len(x) s = 1.0 - (1.0 / (2.0 * np.sqrt(problemDimensions + 20.0) - 8.2)) mu1 = 2.5 mu2 = - np.sqrt(abs((mu1**2 - 1.0) / s)) firstSum = 0.0 secondSum = 0.0 thirdSum = 0.0 for i in range(problemDimensions): firstSum += (x[i]-mu1)**2 secondSum += (x[i]-mu2)**2 thirdSum += 1.0 - np.cos(2*np.pi*(x[i]-mu1)) return min(firstSum, 1.0*problemDimensions + secondSum)+10*thirdSum # following functions using discretization should not be used with translation/rotation @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11485, 40085, 1634, 1330, 1221, 1186, 1634, 198, 6738, 11485, 11321, 13, 12501, 273, 2024, 1330, 33432, 628, 198, 2301, 4592, 796, 33432, 3419, 628, 628, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 198, 4299, 14678, 558, 74, 7, 87, 25, 45941, 13, 358, 18747, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 13403, 319, 3740, 1378, 2503, 13, 6359, 13, 403, 76, 13, 15532, 14, 93, 710, 282, 13, 3937, 912, 14, 67, 4908, 14, 26968, 4102, 22203, 14, 75, 403, 558, 74, 13, 6494, 526, 15931, 198, 220, 220, 220, 1917, 29271, 5736, 796, 18896, 7, 87, 8, 198, 220, 220, 220, 264, 796, 352, 13, 15, 532, 357, 16, 13, 15, 1220, 357, 17, 13, 15, 1635, 45941, 13, 31166, 17034, 7, 45573, 29271, 5736, 1343, 1160, 13, 15, 8, 532, 807, 13, 17, 4008, 198, 220, 220, 220, 38779, 16, 796, 362, 13, 20, 198, 220, 220, 220, 38779, 17, 796, 532, 45941, 13, 31166, 17034, 7, 8937, 19510, 30300, 16, 1174, 17, 532, 352, 13, 15, 8, 1220, 264, 4008, 198, 220, 220, 220, 717, 13065, 796, 657, 13, 15, 198, 220, 220, 220, 1218, 13065, 796, 657, 13, 15, 198, 220, 220, 220, 2368, 13065, 796, 657, 13, 15, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 45573, 29271, 5736, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 717, 13065, 15853, 357, 87, 58, 72, 45297, 30300, 16, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 13065, 15853, 357, 87, 58, 72, 45297, 30300, 17, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2368, 13065, 15853, 352, 13, 15, 532, 45941, 13, 6966, 7, 17, 9, 37659, 13, 14415, 9, 7, 87, 58, 72, 45297, 30300, 16, 4008, 198, 220, 220, 220, 1441, 949, 7, 11085, 13065, 11, 352, 13, 15, 9, 45573, 29271, 5736, 1343, 1218, 13065, 47762, 940, 9, 17089, 13065, 628, 198, 2, 1708, 5499, 1262, 1221, 1186, 1634, 815, 407, 307, 973, 351, 11059, 14, 10599, 341, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 198 ]
2.67087
793
string = input() d = {} for i in string: if i in d: d[i] += 1 else: d[i] = 1 s = sorted(sorted(d), key = d.get, reverse = True) for i in s[:3]: print(i, d[i])
[ 8841, 796, 5128, 3419, 198, 67, 796, 23884, 198, 1640, 1312, 287, 4731, 25, 198, 220, 220, 220, 611, 1312, 287, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 72, 60, 15853, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 72, 60, 796, 352, 198, 82, 796, 23243, 7, 82, 9741, 7, 67, 828, 1994, 796, 288, 13, 1136, 11, 9575, 796, 6407, 8, 198, 1640, 1312, 287, 264, 58, 25, 18, 5974, 198, 220, 220, 220, 3601, 7, 72, 11, 288, 58, 72, 12962, 198 ]
1.888889
99
for row in solve(10): print(row)
[ 198, 198, 1640, 5752, 287, 8494, 7, 940, 2599, 198, 220, 220, 220, 3601, 7, 808, 8, 198 ]
2.166667
18
import random import string from subprocess import run from types import SimpleNamespace import psycopg2 import versions from docker_helpers import get_image_name, pull, exec_safely from service_config import api_db_user from settings import get_secret root_user = "vimc" # these tables should only be modified via sql migrations protected_tables = ["gavi_support_level", "activity_type", "burden_outcome", "gender", "responsibility_set_status", "impact_outcome", "gavi_support_level", "support_type", "touchstone_status", "permission", "role", "role_permission"] def for_each_user(root_password, users, operation): """Operation is a callback (function) that takes the connection cursor and a UserConfig object""" with connect(root_user, root_password) as conn: with conn.cursor() as cur: for user in users: operation(cur, user) conn.commit() # NOTE: it might be worth revisiting this to not run this script # directly (that requires corresponding changes in montagu-db to move # the inline sql into a standalone .sql file and then getting psql to # run it via docker exec - it must run as the vimc user). The # passwords might move directly under control here using set_password # (but these are special users so we'd not want to use the rest of the # user machinery). But I suggest waiting until the restore is done # VIMC-1560) because that is likely to affect how we deal with users
[ 11748, 4738, 198, 11748, 4731, 198, 6738, 850, 14681, 1330, 1057, 198, 6738, 3858, 1330, 17427, 36690, 10223, 198, 198, 11748, 17331, 22163, 70, 17, 198, 198, 11748, 6300, 198, 6738, 36253, 62, 16794, 364, 1330, 651, 62, 9060, 62, 3672, 11, 2834, 11, 2452, 62, 21230, 306, 198, 6738, 2139, 62, 11250, 1330, 40391, 62, 9945, 62, 7220, 198, 6738, 6460, 1330, 651, 62, 21078, 198, 198, 15763, 62, 7220, 796, 366, 31124, 66, 1, 198, 2, 777, 8893, 815, 691, 307, 9518, 2884, 44161, 15720, 602, 198, 24326, 62, 83, 2977, 796, 14631, 70, 15820, 62, 11284, 62, 5715, 1600, 366, 21797, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 42568, 62, 448, 2958, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8388, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16733, 2247, 62, 2617, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48240, 62, 448, 2958, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 70, 15820, 62, 11284, 62, 5715, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11284, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29332, 6440, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 525, 3411, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18090, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18090, 62, 525, 3411, 8973, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 329, 62, 27379, 62, 7220, 7, 15763, 62, 28712, 11, 2985, 11, 4905, 2599, 198, 220, 220, 220, 37227, 32180, 318, 257, 23838, 357, 8818, 8, 326, 2753, 262, 4637, 23493, 198, 220, 220, 220, 290, 257, 11787, 16934, 2134, 37811, 198, 220, 220, 220, 351, 2018, 7, 15763, 62, 7220, 11, 6808, 62, 28712, 8, 355, 48260, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48260, 13, 66, 21471, 3419, 355, 1090, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2836, 287, 2985, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4905, 7, 22019, 11, 2836, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 628, 198, 198, 2, 24550, 25, 340, 1244, 307, 2861, 22124, 1780, 428, 284, 407, 1057, 428, 4226, 198, 2, 3264, 357, 5562, 4433, 11188, 2458, 287, 40689, 11433, 12, 9945, 284, 1445, 198, 2, 262, 26098, 44161, 656, 257, 27669, 764, 25410, 2393, 290, 788, 1972, 279, 25410, 284, 198, 2, 1057, 340, 2884, 36253, 2452, 532, 340, 1276, 1057, 355, 262, 43907, 66, 2836, 737, 220, 383, 198, 2, 21442, 1244, 1445, 3264, 739, 1630, 994, 1262, 900, 62, 28712, 198, 2, 357, 4360, 777, 389, 2041, 2985, 523, 356, 1549, 407, 765, 284, 779, 262, 1334, 286, 262, 198, 2, 2836, 20230, 737, 220, 887, 314, 1950, 4953, 1566, 262, 11169, 318, 1760, 198, 2, 569, 3955, 34, 12, 1314, 1899, 8, 780, 326, 318, 1884, 284, 2689, 703, 356, 1730, 351, 2985, 628 ]
2.615987
638
#!/usr/bin/env python3 import poplib import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='MailBox basic params') parser.add_argument('--hostname', action="store", dest="hostname") parser.add_argument('--port', action="store", dest="port") parser.add_argument('--user', action="store", dest="user") given_args = parser.parse_args() hostname = given_args.hostname port = given_args.port user = given_args.user import getpass password = getpass.getpass(prompt='Enter your password:') main(hostname,port,user,password)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 1461, 8019, 198, 11748, 1822, 29572, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 25804, 14253, 4096, 42287, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 4774, 3672, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 4774, 3672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 634, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 634, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7220, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 7220, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1813, 62, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 3672, 796, 1813, 62, 22046, 13, 4774, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 796, 1813, 62, 22046, 13, 634, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 1813, 62, 22046, 13, 7220, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 651, 6603, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 651, 6603, 13, 1136, 6603, 7, 16963, 457, 11639, 17469, 534, 9206, 25, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 7, 4774, 3672, 11, 634, 11, 7220, 11, 28712, 8, 628 ]
2.557312
253
import sys import time import redis from openob.rtp.tx import RTPTransmitter from openob.rtp.rx import RTPReceiver import gst from colorama import Fore, Back, Style # OpenOB Link Manager # One of these runs at each end and negotiates everything (RX pushes config info to TX), reconnects when links fail, and so on. class Manager: '''OpenOB Manager. Handles management of links, mostly recovery from failures.'''
[ 11748, 25064, 201, 198, 11748, 640, 201, 198, 11748, 2266, 271, 201, 198, 6738, 1280, 672, 13, 17034, 79, 13, 17602, 1330, 371, 7250, 8291, 37974, 201, 198, 6738, 1280, 672, 13, 17034, 79, 13, 40914, 1330, 371, 7250, 3041, 39729, 201, 198, 11748, 308, 301, 201, 198, 6738, 3124, 1689, 1330, 4558, 11, 5157, 11, 17738, 201, 198, 2, 4946, 9864, 7502, 9142, 201, 198, 2, 1881, 286, 777, 4539, 379, 1123, 886, 290, 5578, 689, 2279, 357, 49, 55, 20070, 4566, 7508, 284, 15326, 828, 37671, 82, 618, 6117, 2038, 11, 290, 523, 319, 13, 201, 198, 4871, 9142, 25, 201, 198, 220, 705, 7061, 11505, 9864, 9142, 13, 7157, 829, 4542, 286, 6117, 11, 4632, 7628, 422, 15536, 2637, 7061, 201, 198 ]
3.4
125
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
79
Edit dataset card