|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Aishell dataset. |
|
""" |
|
|
|
import os |
|
import datasets |
|
from huggingface_hub import list_repo_files |
|
import gzip |
|
import json |
|
|
|
repo_id = "yuekai/aishell" |
|
|
|
_DESCRIPTION = """\ |
|
aishell |
|
""" |
|
_HOMEPAGE = "https://github.com/SpeechColab/Aishell" |
|
|
|
_SUBSETS = ("train", "dev", "test") |
|
|
|
_BASE_DATA_URL = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" |
|
|
|
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "data/aishell_cuts_{subset}.{archive_id:08}.tar.gz" |
|
|
|
_META_URL = _BASE_DATA_URL + "data/aishell_cuts_{subset}.{archive_id:08}.jsonl.gz" |
|
|
|
FILES = list_repo_files(repo_id, repo_type="dataset") |
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
class CustomAudioConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the dataset.""" |
|
|
|
def __init__(self, name, *args, **kwargs): |
|
"""BuilderConfig for the dataset. |
|
""" |
|
super().__init__(name=name, *args, **kwargs) |
|
assert name in _SUBSETS, f"Unknown subset {name}" |
|
self.subsets_to_download = (name,) |
|
|
|
|
|
class Aishell(datasets.GeneratorBasedBuilder): |
|
""" |
|
Aishell is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality |
|
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised |
|
and unsupervised training (this implementation contains only labelled data for now). |
|
Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts |
|
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, |
|
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable |
|
for speech recognition training, and to filter out segments with low-quality transcription. For system training, |
|
Aishell provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. |
|
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, |
|
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, |
|
are re-processed by professional human transcribers to ensure high transcription quality. |
|
""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [CustomAudioConfig(name=subset) for subset in _SUBSETS] |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 128 |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"segment_id": datasets.Value("string"), |
|
"speaker": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"original_full_path": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
@property |
|
def _splits_to_subsets(self): |
|
return { |
|
"train": ['train'], |
|
"dev": ["dev"], |
|
"test": ["test"] |
|
} |
|
|
|
def _split_generators(self, dl_manager): |
|
splits_to_subsets = self._splits_to_subsets |
|
splits = (self.config.name,) |
|
|
|
|
|
|
|
|
|
|
|
split_to_n_archives = { |
|
split: int(len([file for file in FILES if f"cuts_{splits_to_subsets[split][0]}" in file]) / 2) |
|
for split in splits |
|
} |
|
|
|
|
|
audio_archives_urls = { |
|
split: |
|
[ |
|
_AUDIO_ARCHIVE_URL.format(subset=splits_to_subsets[split][0], |
|
archive_id=i) |
|
for i in range(split_to_n_archives[split]) |
|
] |
|
for split in splits |
|
} |
|
|
|
audio_archives_paths = dl_manager.download(audio_archives_urls) |
|
|
|
local_audio_archives_paths = dl_manager.extract(audio_archives_paths) if not dl_manager.is_streaming \ |
|
else None |
|
|
|
|
|
meta_urls = { |
|
split: [ |
|
_META_URL.format(subset=splits_to_subsets[split][0], archive_id=i) |
|
for i in range(split_to_n_archives[split]) |
|
] |
|
for split in splits |
|
} |
|
|
|
|
|
meta_paths = dl_manager.download(meta_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_archives_iterators": [ |
|
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths[self.config.name] |
|
], |
|
"local_audio_archives_paths": local_audio_archives_paths[ |
|
self.config.name] if local_audio_archives_paths else None, |
|
"meta_paths": meta_paths[self.config.name] |
|
}, |
|
), |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _generate_examples(self, audio_archives_iterators, local_audio_archives_paths, meta_paths): |
|
|
|
def load_meta(file_path): |
|
data = {} |
|
|
|
with gzip.open(file_path, 'rt', encoding='utf-8') as f: |
|
for line in f: |
|
item = json.loads(line) |
|
data[item["id"]] = item |
|
return data |
|
|
|
assert len(audio_archives_iterators) == len(meta_paths) |
|
if local_audio_archives_paths: |
|
assert len(audio_archives_iterators) == len(local_audio_archives_paths) |
|
|
|
for i, (meta_path, audio_archive_iterator) in enumerate(zip(meta_paths, audio_archives_iterators)): |
|
meta_dict = load_meta(meta_path) |
|
|
|
for audio_path_in_archive, audio_file in audio_archive_iterator: |
|
|
|
audio_filename = os.path.split(audio_path_in_archive)[-1] |
|
|
|
audio_id = audio_filename.split(".wav")[0] |
|
audio_meta = meta_dict[audio_id] |
|
|
|
audio_meta["segment_id"] = audio_id |
|
audio_meta["original_full_path"] = audio_meta["recording"]["sources"][0]["source"] |
|
audio_meta["text"] = audio_meta['supervisions'][0]['text'] |
|
audio_meta["speaker"] = audio_meta['supervisions'][0]['speaker'] |
|
|
|
path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths \ |
|
else audio_path_in_archive |
|
|
|
yield audio_id, { |
|
"audio": {"path": path , "bytes": audio_file.read()}, |
|
**{feature: value for feature, value in audio_meta.items() if feature in self.info.features} |
|
} |
|
|