Unnamed: 0
int64
0
4.17k
text
stringlengths
44
882
id
int64
0
4.17k
label
int64
0
12
600
<< Acetylcholinesterase >> (AChE) inhibited by the organophosphate soman ([[ 1,2,2-trimethyl-propylmethylphosphonofluoridate ]]) rapidly becomes resistant to reactivation by oximes due to dealkylation of the soman-enzyme complex.
600
0
601
Acetylcholinesterase (<< AChE >>) inhibited by the organophosphate soman ([[ 1,2,2-trimethyl-propylmethylphosphonofluoridate ]]) rapidly becomes resistant to reactivation by oximes due to dealkylation of the soman-enzyme complex.
601
0
602
The effect of the four mono- and bisquaternary ammonium compounds tetramethylammonium (TMA), hexamethonium, decamethonium and suxamethonium on the reactivatability of << soman >>-inhibited, solubilized [[ AChE ]] from human erythrocytes was investigated in vitro.
602
0
603
If the effectors were added after 5 min of aging they increased the activity of << soman >>-inhibited [[ AChE ]], but to a considerably smaller extent than HI 6.
603
0
604
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, << TOP2 >>-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. [[ doxorubicin ]], etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
604
0
605
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive << TOP2 >> poisons (e.g. [[ doxorubicin ]], etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
605
0
606
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, << TOP2 >>-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, [[ etoposide ]], mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
606
0
607
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive << TOP2 >> poisons (e.g. doxorubicin, [[ etoposide ]], mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
607
0
608
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, << TOP2 >>-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, [[ mitoxantrone ]], and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
608
0
609
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive << TOP2 >> poisons (e.g. doxorubicin, etoposide, [[ mitoxantrone ]], and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
609
0
610
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, << TOP2 >>-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, mitoxantrone, and [[ 4'-(9-acridinylamino)methanesulfon-m-anisidide ]]) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
610
0
611
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive << TOP2 >> poisons (e.g. doxorubicin, etoposide, mitoxantrone, and [[ 4'-(9-acridinylamino)methanesulfon-m-anisidide ]]) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected.
611
0
612
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive << TOP2 >> poisons (e.g. [[ amonafide ]], batracylin, and menadione) was only slightly (less than 3-fold) affected.
612
0
613
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive << TOP2 >> poisons (e.g. amonafide, [[ batracylin ]], and menadione) was only slightly (less than 3-fold) affected.
613
0
614
First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive << TOP2 >> poisons (e.g. amonafide, batracylin, and [[ menadione ]]) was only slightly (less than 3-fold) affected.
614
0
615
In addition, ADP was shown to strongly antagonize << TOP2 >>-mediated DNA cleavage induced by [[ ATP ]]-sensitive but not ATP-insensitive TOP2 poisons.
615
6
616
Second, C427A mutant human TOP2alpha, which exhibits reduced << ATPase >> activity, was shown to exhibit cross-resistance to all ATP-sensitive but not [[ ATP ]]-insensitive TOP2 poisons.
616
3
617
Activation of << ALDH2 >> with [[ ethanol ]] attenuates diabetes induced myocardial injury in rats.
617
9
618
This study assessed changes in myocardial ALDH2 expression in the diabetic rat, in particular the diabetic rat pretreated with << ALDH2 >> activator [[ ethanol ]] (EtOH).
618
9
619
This study assessed changes in myocardial ALDH2 expression in the diabetic rat, in particular the diabetic rat pretreated with << ALDH2 >> activator ethanol ([[ EtOH ]]).
619
9
620
HbA1c level in DM12W group was higher than in DM4W group, << HbA1c >> level in [[ EtOH ]]+DM8W group was lower than in DM8W group.
620
8
621
Compared with DM8W group, << SOD >> and ALDH2 in [[ EtOH ]]+DM8W group was increased, MDA was decreased.
621
6
622
Compared with DM8W group, SOD and << ALDH2 >> in [[ EtOH ]]+DM8W group was increased, MDA was decreased.
622
6
623
Kinetic mechanism of << quinone oxidoreductase 2 >> and its inhibition by the antimalarial [[ quinolines ]].
623
0
624
<< QR2 >> catalyzes the two-electron reduction of menadione via the oxidation of N-alkylated or [[ N-ribosylated nicotinamides ]].
624
5
625
<< QR2 >> catalyzes the two-electron reduction of [[ menadione ]] via the oxidation of N-alkylated or N-ribosylated nicotinamides.
625
5
626
<< QR2 >> catalyzes the two-electron reduction of menadione via the oxidation of [[ N-alkylated ]] or N-ribosylated nicotinamides.
626
5
627
To investigate the mechanism and consequences of inhibition of << QR2 >> by the [[ quinolines ]] further, we have used steady-state and transient-state kinetics to define the mechanism of QR2.
627
0
628
To investigate the mechanism and consequences of inhibition of QR2 by the << quinolines >> further, we have used steady-state and transient-state kinetics to define the mechanism of [[ QR2 ]].
628
0
629
Our studies shed light on the possible in vivo potency of the << quinolines >> and provide a foundation for future studies aimed at creating more potent [[ QR2 ]] inhibitors and at understanding the physiological significance of QR2.
629
0
630
Methods: Stabilized anaplastic thyroid cancer cell lines (BHT-101 and CAL-62) and primary cultures from patients who underwent thyroidectomy for anaplastic thyroid cancer were treated with the << histone deacetylase >> inhibitor [[ LBH589 ]].
630
0
631
Results: Our results demonstrate that treatment with << LBH589 >> leads to [[ NIS ]] RNA expression as shown by RT-PCR and luciferase assay, and to protein expression as determined by immunofluorescence in vitro and by immunohistochemistry in xenograft tumors.
631
6
632
Pharmacokinetic Interactions between << Monoamine Oxidase A >> Inhibitor [[ Harmaline ]] and 5-Methoxy-N,N-Dimethyltryptamine, and the Impact of CYP2D6 Status.
632
0
633
Our recent study has demonstrated that coadministration of << monoamine oxidase A >> (MAO-A) inhibitor [[ harmaline ]] (5 mg/kg) increases systemic exposure to 5-MeO-DMT (2 mg/kg) and active metabolite bufotenine.
633
0
634
Our recent study has demonstrated that coadministration of monoamine oxidase A (<< MAO-A >>) inhibitor [[ harmaline ]] (5 mg/kg) increases systemic exposure to 5-MeO-DMT (2 mg/kg) and active metabolite bufotenine.
634
0
635
Our data revealed that inhibition of << MAO-A >>-mediated metabolic elimination by [[ harmaline ]] (2, 5, and 15 mg/kg) led to a sharp increase in systemic and cerebral exposure to 5-MeO-DMT (2 and 10 mg/kg) at all dose combinations.
635
0
636
The in vivo inhibitory effect of << harmaline >> on CYP2D6-catalyzed bufotenine formation was confirmed by in vitro study using purified [[ CYP2D6 ]].
636
3
637
The in vivo inhibitory effect of << harmaline >> on [[ CYP2D6 ]]-catalyzed bufotenine formation was confirmed by in vitro study using purified CYP2D6.
637
0
638
The in vivo inhibitory effect of harmaline on CYP2D6-catalyzed << bufotenine >> formation was confirmed by in vitro study using purified [[ CYP2D6 ]].
638
4
639
The in vivo inhibitory effect of harmaline on << CYP2D6 >>-catalyzed [[ bufotenine ]] formation was confirmed by in vitro study using purified CYP2D6.
639
5
640
Given these findings, a unified PK model including the inhibition of << MAO-A >>- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood [[ harmaline ]], 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
640
0
641
Given these findings, a unified PK model including the inhibition of MAO-A- and << CYP2D6 >>-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood [[ harmaline ]], 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
641
0
642
Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood << harmaline >>, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-[[ CYP2D6 ]] mouse models.
642
0
643
Given these findings, a unified PK model including the inhibition of << MAO-A >>- and CYP2D6-catalyzed 5-MeO-DMT metabolism by [[ harmaline ]] was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
643
0
644
Given these findings, a unified PK model including the inhibition of MAO-A- and << CYP2D6 >>-catalyzed 5-MeO-DMT metabolism by [[ harmaline ]] was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
644
0
645
Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by << harmaline >> was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-[[ CYP2D6 ]] mouse models.
645
0
646
Given these findings, a unified PK model including the inhibition of << MAO-A >>- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, [[ 5-MeO-DMT ]], and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
646
5
647
Given these findings, a unified PK model including the inhibition of MAO-A- and << CYP2D6 >>-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, [[ 5-MeO-DMT ]], and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
647
5
648
Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, << 5-MeO-DMT >>, and bufotenine PK profiles in both wild-type and Tg-[[ CYP2D6 ]] mouse models.
648
5
649
Given these findings, a unified PK model including the inhibition of << MAO-A >>- and CYP2D6-catalyzed [[ 5-MeO-DMT ]] metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
649
5
650
Given these findings, a unified PK model including the inhibition of MAO-A- and << CYP2D6 >>-catalyzed [[ 5-MeO-DMT ]] metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models.
650
5
651
Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed << 5-MeO-DMT >> metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-[[ CYP2D6 ]] mouse models.
651
5
652
Compared pharmacological characteristics in humans of racemic << cetirizine >> and levocetirizine, two [[ histamine H1-receptor ]] antagonists.
652
1
653
Compared pharmacological characteristics in humans of racemic cetirizine and << levocetirizine >>, two [[ histamine H1-receptor ]] antagonists.
653
1
654
The potent << histamine H(1)-receptor >> antagonist [[ cetirizine ]] (Zyrtec) is a racemic mixture of levocetirizine (now available under the trademark Xyzal and dextrocetirizine.
654
1
655
The potent << histamine H(1)-receptor >> antagonist cetirizine ([[ Zyrtec ]]) is a racemic mixture of levocetirizine (now available under the trademark Xyzal and dextrocetirizine.
655
1
656
The potent << histamine H(1)-receptor >> antagonist cetirizine (Zyrtec) is a racemic mixture of [[ levocetirizine ]] (now available under the trademark Xyzal and dextrocetirizine.
656
1
657
The potent << histamine H(1)-receptor >> antagonist cetirizine (Zyrtec) is a racemic mixture of levocetirizine (now available under the trademark [[ Xyzal ]] and dextrocetirizine.
657
1
658
The potent << histamine H(1)-receptor >> antagonist cetirizine (Zyrtec) is a racemic mixture of levocetirizine (now available under the trademark Xyzal and [[ dextrocetirizine ]].
658
1
659
<< Vegfrecine >>, an Inhibitor of [[ VEGF Receptor Tyrosine Kinases ]] Isolated from the Culture Broth of Streptomyces sp.
659
0
660
A new inhibitor of << VEGF receptor tyrosine kinases >>, [[ vegfrecine ]] (1), was isolated from the culture broth of Streptomyces sp.
660
0
661
As opposed to the rat and flounder orthologs, << hNaDC-3 >> was hardly inhibited by [[ lithium ]] concentrations up to 5 mM.
661
0
662
Effects of inhibition of << urokinase-type plasminogen activator >> (u-PA) by [[ amiloride ]] in the cornea and tear fluid of eyes irradiated with UVB.
662
0
663
Effects of inhibition of urokinase-type plasminogen activator (<< u-PA >>) by [[ amiloride ]] in the cornea and tear fluid of eyes irradiated with UVB.
663
0
664
The purpose of the present study was to test our hypothesis that << amiloride >>, a specific [[ u-PA ]] inhibitor, effectively decreases u-PA activity in cornea as well as in tear fluid and favourably affects corneal healing.
664
0
665
The purpose of the present study was to test our hypothesis that << amiloride >>, a specific u-PA inhibitor, effectively decreases [[ u-PA ]] activity in cornea as well as in tear fluid and favourably affects corneal healing.
665
0
666
Therefore, comparative histochemical and biochemical studies of << u-PA >> and the effects of amiloride were performed on rabbit corneas and tear fluid using the sensitive fluorogenic substrate [[ Z-Gly-Gly-Arg-7-amino-4-trifluoromethylcoumarin ]].
666
5
667
When << amiloride >> was dropped on the eye surface on the first day of irradiation and subsequently daily until the end of the experiment, [[ u-PA ]] activity in both cornea and tear fluid was strongly inhibited.
667
0
668
In conclusion, early application of << amiloride >> inhibited [[ u-PA ]] activity in UVB-irradiated corneas as well as in tear fluid and diminished the development of corneal pathology.
668
0
669
<< Prednisolone >> also inhibited ACTH and cortisol secretion in response to exogenous [[ CRH ]] stimulation, inferring rapid feedback inhibition at the anterior pituitary.
669
3
670
Prednisolone also inhibited ACTH and << cortisol >> secretion in response to exogenous [[ CRH ]] stimulation, inferring rapid feedback inhibition at the anterior pituitary.
670
4
671
Pharmacophore identification of << c-Myc >> inhibitor [[ 10074-G5 ]].
671
0
672
A structure-activity relationship (SAR) study of the << c-Myc >> (Myc) inhibitor [[ 10074-G5 ]] (N-([1,1'-biphenyl]-2-yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine, 1) - which targets a hydrophobic domain of the Myc oncoprotein that is flanked by arginine residues - was executed in order to determine its pharmacophore.
672
0
673
A structure-activity relationship (SAR) study of the c-Myc (<< Myc >>) inhibitor [[ 10074-G5 ]] (N-([1,1'-biphenyl]-2-yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine, 1) - which targets a hydrophobic domain of the Myc oncoprotein that is flanked by arginine residues - was executed in order to determine its pharmacophore.
673
0
674
A structure-activity relationship (SAR) study of the << c-Myc >> (Myc) inhibitor 10074-G5 ([[ N-([1,1'-biphenyl]-2-yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine ]], 1) - which targets a hydrophobic domain of the Myc oncoprotein that is flanked by arginine residues - was executed in order to determine its pharmacophore.
674
0
675
A structure-activity relationship (SAR) study of the c-Myc (<< Myc >>) inhibitor 10074-G5 ([[ N-([1,1'-biphenyl]-2-yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine ]], 1) - which targets a hydrophobic domain of the Myc oncoprotein that is flanked by arginine residues - was executed in order to determine its pharmacophore.
675
0
676
Importantly, the carboxylic acid of << JY-3-094 >> improves the physicochemical properties of the lead compound, which will facilitate the incorporation of additional hydrophobicity that might enhance [[ Myc ]] inhibitory activity further still.
676
0
677
<< Miglustat >>, a small iminosugar molecule approved for the treatment of Gaucher disease, reversibly inhibits [[ glucosylceramide synthase ]], which catalyses the first committed step in glycosphingolipid synthesis.
677
0
678
Furthermore, compared with control groups, the plaque endothelium level of << p75(NTR) >> was 3-fold increased and the liver level of p75(NTR) was 17.4-fold increased by [[ SFO ]]-HD.
678
6
679
Furthermore, compared with control groups, the plaque endothelium level of p75(NTR) was 3-fold increased and the liver level of << p75(NTR) >> was 17.4-fold increased by [[ SFO ]]-HD.
679
6
680
Meanwhile, the serum level of KC (a functional homolog of << IL-8 >> and the main proinflammatory alpha chemokine in mice) in apoE(-/-) mice was up to 357pg/ml in [[ SFO ]]-HD treated group.
680
6
681
Meanwhile, the serum level of KC (a functional homolog of IL-8 and the main proinflammatory << alpha chemokine >> in mice) in apoE(-/-) mice was up to 357pg/ml in [[ SFO ]]-HD treated group.
681
6
682
Thus, << SFO >> contributes to the instability of atherosclerotic plaque in apoE(-/-) mice through activating [[ p75(NTR) ]] and IL-8 and cell apoptosis in plaque.
682
9
683
Thus, << SFO >> contributes to the instability of atherosclerotic plaque in apoE(-/-) mice through activating p75(NTR) and [[ IL-8 ]] and cell apoptosis in plaque.
683
9
684
<< Levodopa >> is absorbed in the small bowel and is rapidly catabolized by [[ aromatic-L-amino-acid decarboxylase ]] (AADC) and catechol-O-methyltransferase (COMT).
684
5
685
<< Levodopa >> is absorbed in the small bowel and is rapidly catabolized by aromatic-L-amino-acid decarboxylase ([[ AADC ]]) and catechol-O-methyltransferase (COMT).
685
5
686
<< Levodopa >> is absorbed in the small bowel and is rapidly catabolized by aromatic-L-amino-acid decarboxylase (AADC) and [[ catechol-O-methyltransferase ]] (COMT).
686
5
687
<< Levodopa >> is absorbed in the small bowel and is rapidly catabolized by aromatic-L-amino-acid decarboxylase (AADC) and catechol-O-methyltransferase ([[ COMT ]]).
687
5
688
Because gastric AADC and COMT degrade levodopa, the drug is given with inhibitors of << AADC >> (carbidopa or [[ benserazide ]]), and inhibitors of COMT will also enter clinical use.
688
0
689
Because gastric AADC and COMT degrade levodopa, the drug is given with inhibitors of << AADC >> ([[ carbidopa ]] or benserazide), and inhibitors of COMT will also enter clinical use.
689
0
690
Because gastric << AADC >> and COMT degrade [[ levodopa ]], the drug is given with inhibitors of AADC (carbidopa or benserazide), and inhibitors of COMT will also enter clinical use.
690
5
691
Because gastric AADC and << COMT >> degrade [[ levodopa ]], the drug is given with inhibitors of AADC (carbidopa or benserazide), and inhibitors of COMT will also enter clinical use.
691
5
692
Rats were fed experimental diets containing SPI or << casein >> as a [[ nitrogen ]] source.
692
4
693
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: 4-methoxy-2-naphthylamide of L-alanine for aminopeptidase N, 4-methoxy-2-naphthylamide of L-leucine for leucine aminopeptidase, 4-methoxy-2-naphthylamide of L-glutamic acid for aminopeptidase A and 4-methoxy-2-naphthylamide of << L-arginine >> for [[ aminopeptidase B ]].
693
5
694
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: << 4-methoxy-2-naphthylamide >> of L-alanine for [[ aminopeptidase N ]], 4-methoxy-2-naphthylamide of L-leucine for leucine aminopeptidase, 4-methoxy-2-naphthylamide of L-glutamic acid for aminopeptidase A and 4-methoxy-2-naphthylamide of L-arginine for aminopeptidase B.
694
5
695
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: 4-methoxy-2-naphthylamide of << L-alanine >> for [[ aminopeptidase N ]], 4-methoxy-2-naphthylamide of L-leucine for leucine aminopeptidase, 4-methoxy-2-naphthylamide of L-glutamic acid for aminopeptidase A and 4-methoxy-2-naphthylamide of L-arginine for aminopeptidase B.
695
5
696
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: 4-methoxy-2-naphthylamide of L-alanine for aminopeptidase N, << 4-methoxy-2-naphthylamide >> of L-leucine for [[ leucine aminopeptidase ]], 4-methoxy-2-naphthylamide of L-glutamic acid for aminopeptidase A and 4-methoxy-2-naphthylamide of L-arginine for aminopeptidase B.
696
5
697
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: 4-methoxy-2-naphthylamide of L-alanine for aminopeptidase N, 4-methoxy-2-naphthylamide of << L-leucine >> for [[ leucine aminopeptidase ]], 4-methoxy-2-naphthylamide of L-glutamic acid for aminopeptidase A and 4-methoxy-2-naphthylamide of L-arginine for aminopeptidase B.
697
5
698
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: 4-methoxy-2-naphthylamide of L-alanine for aminopeptidase N, 4-methoxy-2-naphthylamide of L-leucine for leucine aminopeptidase, << 4-methoxy-2-naphthylamide >> of L-glutamic acid for [[ aminopeptidase A ]] and 4-methoxy-2-naphthylamide of L-arginine for aminopeptidase B.
698
5
699
Different substrates were used as the relative specific substrates for the determination of aminopeptidase enzymatic activity: 4-methoxy-2-naphthylamide of L-alanine for aminopeptidase N, 4-methoxy-2-naphthylamide of L-leucine for leucine aminopeptidase, 4-methoxy-2-naphthylamide of << L-glutamic acid >> for [[ aminopeptidase A ]] and 4-methoxy-2-naphthylamide of L-arginine for aminopeptidase B.
699
5