|
--- |
|
library_name: transformers |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Ori vi |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
args: 'config: hi, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 16.551919937539925 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Ori vi |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4981 |
|
- Wer: 16.5519 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 0.5019 | 0.2222 | 100 | 0.4649 | 17.3540 | |
|
| 0.4235 | 0.4444 | 200 | 0.4257 | 16.7932 | |
|
| 0.4364 | 0.6667 | 300 | 0.4184 | 16.5164 | |
|
| 0.4106 | 0.8889 | 400 | 0.4043 | 15.6434 | |
|
| 0.2338 | 1.1111 | 500 | 0.4064 | 15.7286 | |
|
| 0.2286 | 1.3333 | 600 | 0.4066 | 15.9699 | |
|
| 0.2185 | 1.5556 | 700 | 0.4058 | 15.7428 | |
|
| 0.212 | 1.7778 | 800 | 0.3999 | 15.6079 | |
|
| 0.2308 | 2.0 | 900 | 0.3991 | 17.2617 | |
|
| 0.0983 | 2.2222 | 1000 | 0.4233 | 15.9415 | |
|
| 0.1183 | 2.4444 | 1100 | 0.4286 | 16.0409 | |
|
| 0.1003 | 2.6667 | 1200 | 0.4304 | 16.0764 | |
|
| 0.1005 | 2.8889 | 1300 | 0.4332 | 15.7641 | |
|
| 0.048 | 3.1111 | 1400 | 0.4636 | 16.3248 | |
|
| 0.0475 | 3.3333 | 1500 | 0.4684 | 16.2041 | |
|
| 0.0516 | 3.5556 | 1600 | 0.4679 | 16.2254 | |
|
| 0.058 | 3.7778 | 1700 | 0.4691 | 16.2538 | |
|
| 0.0457 | 4.0 | 1800 | 0.4693 | 16.2041 | |
|
| 0.028 | 4.2222 | 1900 | 0.4940 | 16.4880 | |
|
| 0.0235 | 4.4444 | 2000 | 0.4981 | 16.5519 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.0 |
|
|