datdo2717's picture
End of training
0b60bd9 verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Ori vi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 15.282853384008185

Whisper Small Ori vi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4093
  • Wer: 15.2829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4964 0.2222 100 0.4513 18.4622
0.4607 0.4444 200 0.4251 18.1479
0.4223 0.6667 300 0.4054 17.3732
0.4186 0.8889 400 0.3998 17.2562
0.2411 1.1111 500 0.3978 16.8616
0.2425 1.3333 600 0.3946 16.8396
0.2194 1.5556 700 0.3926 14.8882
0.238 1.7778 800 0.3905 16.5034
0.2323 2.0 900 0.3904 15.2755
0.1294 2.2222 1000 0.4076 15.0709
0.1139 2.4444 1100 0.4080 15.3706
0.1108 2.6667 1200 0.4102 15.1732
0.1197 2.8889 1300 0.4093 15.2829

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0