date3k2's picture
Update README.md
9cac895 verified
metadata
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: gpt2-text-classification-v2
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases

gpt2-text-classification-v2

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2002
  • Accuracy: 0.9342
  • F1: 0.9340
  • Recall: 0.9314
  • Precision: 0.9367

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.327 0.9974 260 0.8973 0.8929 0.2559 0.9333 0.8558
0.241 1.9987 521 0.919 0.9180 0.2039 0.9296 0.9066
0.244 3.0 782 0.9154 0.9192 0.2156 0.8799 0.9621
0.1843 3.9974 1042 0.9299 0.9288 0.1888 0.9427 0.9154
0.1608 4.9987 1303 0.9301 0.9291 0.1855 0.9428 0.9158
0.124 6.0 1564 0.9322 0.9319 0.1826 0.9357 0.9282
0.112 6.9974 1820 0.2099 0.9315 0.9303 0.9138 0.9473
0.0903 7.9987 2081 0.2002 0.9342 0.9340 0.9314 0.9367

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1