Model Trained Using AutoTrain

  • Problem type: Entity Extraction
  • Model ID: 69856137957
  • CO2 Emissions (in grams): 0.1165

Validation Metrics

  • Loss: 1.510
  • Accuracy: 0.706
  • Precision: 0.648
  • Recall: 0.679
  • F1: 0.663

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-french-ner-blank-model-69856137957

Or Python API:

from transformers import AutoModelForTokenClassification, AutoTokenizer

model = AutoModelForTokenClassification.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
Downloads last month
10
Safetensors
Model size
110M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train davanstrien/CamemBERT-MedNERF