vit-base-patch32-224-in21-leicester_binary

This model is a fine-tuned version of google/vit-base-patch32-224-in21k on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0628
  • F1: 0.9873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 7 0.4529 0.8608
0.5024 2.0 14 0.3989 0.8608
0.3533 3.0 21 0.3741 0.8608
0.3533 4.0 28 0.3161 0.8608
0.285 5.0 35 0.2824 0.8608
0.2491 6.0 42 0.2701 0.8608
0.2491 7.0 49 0.2062 0.9114
0.2032 8.0 56 0.2050 0.9494
0.157 9.0 63 0.2013 0.9494
0.1127 10.0 70 0.1960 0.9367
0.1127 11.0 77 0.1417 0.9494
0.0903 12.0 84 0.1307 0.9494
0.0922 13.0 91 0.0870 0.9873
0.0922 14.0 98 0.2048 0.9241
0.0595 15.0 105 0.1204 0.9620
0.0527 16.0 112 0.2553 0.9367
0.0527 17.0 119 0.1675 0.9367
0.0477 18.0 126 0.2265 0.9241
0.0411 19.0 133 0.1901 0.9367
0.0299 20.0 140 0.2423 0.9241
0.0299 21.0 147 0.0639 0.9873
0.0487 22.0 154 0.1255 0.9494
0.0359 23.0 161 0.1213 0.9494
0.0359 24.0 168 0.0727 0.9747
0.0302 25.0 175 0.1116 0.9494
0.0304 26.0 182 0.1062 0.9494
0.0304 27.0 189 0.2097 0.9241
0.0274 28.0 196 0.1276 0.9494
0.0291 29.0 203 0.0967 0.9494
0.0202 30.0 210 0.0765 0.9747
0.0202 31.0 217 0.0628 0.9873
0.0232 32.0 224 0.1388 0.9494
0.0264 33.0 231 0.1062 0.9494
0.0264 34.0 238 0.1320 0.9494
0.0219 35.0 245 0.1528 0.9494
0.0194 36.0 252 0.1746 0.9494
0.0194 37.0 259 0.1609 0.9494
0.0204 38.0 266 0.1482 0.9494
0.0217 39.0 273 0.1522 0.9494
0.0216 40.0 280 0.1499 0.9494

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davanstrien/vit-base-patch32-224-in21-leicester_binary

Finetuned
(9)
this model