metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: donut_experiment_bayesian_trial_13
results: []
donut_experiment_bayesian_trial_13
This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5500
- Bleu: 0.0682
- Precisions: [0.8219461697722568, 0.755868544600939, 0.7073170731707317, 0.6474358974358975]
- Brevity Penalty: 0.0934
- Length Ratio: 0.2967
- Translation Length: 483
- Reference Length: 1628
- Cer: 0.7531
- Wer: 0.8285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.0814226870239416e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0455 | 1.0 | 253 | 0.5262 | 0.0660 | [0.8166666666666667, 0.7446808510638298, 0.6939890710382514, 0.6407766990291263] | 0.0915 | 0.2948 | 480 | 1628 | 0.7601 | 0.8316 |
0.0276 | 2.0 | 506 | 0.5500 | 0.0682 | [0.8219461697722568, 0.755868544600939, 0.7073170731707317, 0.6474358974358975] | 0.0934 | 0.2967 | 483 | 1628 | 0.7531 | 0.8285 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1