whisper-small-hindi / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
56b4a36
|
raw
history blame
2.08 kB
metadata
language:
  - hi
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Small Hindi - David Aponte
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 32.29492931516126
            name: Wer

Whisper Small Hindi - David Aponte

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4495
  • Wer: 32.2949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0955 2.44 1000 0.3022 34.1192
0.0236 4.89 2000 0.3543 32.6759
0.0018 7.33 3000 0.4257 32.8113
0.0005 9.78 4000 0.4495 32.2949

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2