davidberenstein1957's picture
Model save
af08012 verified
metadata
license: cc-by-nc-4.0
base_model: BramVanroy/GEITje-7B-ultra-sft
tags:
  - generated_from_trainer
model-index:
  - name: ultra-feedback-dutch-cleaned-hq-spin-geitje-7b-ultra-sft_iter0
    results: []

ultra-feedback-dutch-cleaned-hq-spin-geitje-7b-ultra-sft_iter0

This model is a fine-tuned version of BramVanroy/GEITje-7B-ultra-sft on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0135
  • Rewards/real: -1.4818
  • Rewards/generated: -13.3376
  • Rewards/accuracies: 0.9963
  • Rewards/margins: 11.8558
  • Logps/generated: -410.0757
  • Logps/real: -427.4978
  • Logits/generated: -2.7305
  • Logits/real: -2.7643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/real Rewards/generated Rewards/accuracies Rewards/margins Logps/generated Logps/real Logits/generated Logits/real
0.4944 0.08 25 0.2566 0.6645 -0.8427 0.9761 1.5071 -285.1264 -406.0350 -3.0069 -3.0147
0.092 0.16 50 0.0838 0.3983 -3.7771 0.9890 4.1754 -314.4705 -408.6964 -2.9427 -2.9557
0.0601 0.25 75 0.0457 0.2564 -5.6388 0.9963 5.8952 -333.0871 -410.1154 -2.9205 -2.9326
0.0437 0.33 100 0.0336 -0.1853 -7.2451 0.9963 7.0598 -349.1503 -414.5328 -2.8883 -2.9062
0.036 0.41 125 0.0271 -0.1651 -7.7408 0.9945 7.5756 -354.1071 -414.3309 -2.8817 -2.9014
0.0373 0.49 150 0.0264 -0.2384 -7.8312 0.9908 7.5928 -355.0117 -415.0634 -2.8271 -2.8543
0.0198 0.58 175 0.0214 -0.9152 -9.9469 0.9908 9.0317 -376.1681 -421.8315 -2.8052 -2.8326
0.0426 0.66 200 0.0251 -0.9747 -9.1022 0.9908 8.1275 -367.7210 -422.4266 -2.8450 -2.8588
0.0262 0.74 225 0.0189 -0.8414 -9.9318 0.9926 9.0903 -376.0172 -421.0940 -2.8009 -2.8209
0.0142 0.82 250 0.0166 -0.7154 -10.1059 0.9945 9.3905 -377.7586 -419.8336 -2.7973 -2.8201
0.0171 0.9 275 0.0189 -1.0905 -10.9057 0.9945 9.8151 -385.7561 -423.5849 -2.7641 -2.7936
0.0333 0.99 300 0.0168 -1.2797 -11.4866 0.9963 10.2069 -391.5655 -425.4765 -2.7973 -2.8230
0.0061 1.07 325 0.0157 -1.2079 -11.1880 0.9945 9.9801 -388.5797 -424.7587 -2.7974 -2.8231
0.0022 1.15 350 0.0152 -1.0695 -11.2438 0.9908 10.1743 -389.1376 -423.3746 -2.7853 -2.8128
0.0033 1.23 375 0.0148 -1.1767 -11.6618 0.9908 10.4851 -393.3175 -424.4465 -2.7751 -2.8029
0.0043 1.32 400 0.0138 -1.0951 -11.8306 0.9963 10.7354 -395.0049 -423.6307 -2.7703 -2.7976
0.005 1.4 425 0.0136 -1.3179 -12.4674 0.9963 11.1494 -401.3733 -425.8589 -2.7573 -2.7851
0.0031 1.48 450 0.0139 -1.3771 -12.6901 0.9963 11.3130 -403.6003 -426.4503 -2.7544 -2.7815
0.0039 1.56 475 0.0134 -1.3885 -12.8092 0.9963 11.4207 -404.7912 -426.5648 -2.7446 -2.7735
0.001 1.64 500 0.0136 -1.4378 -13.0038 0.9963 11.5660 -406.7370 -427.0571 -2.7404 -2.7701
0.0059 1.73 525 0.0139 -1.5924 -13.4168 0.9945 11.8244 -410.8671 -428.6035 -2.7293 -2.7629
0.0015 1.81 550 0.0136 -1.5136 -13.3984 0.9963 11.8848 -410.6832 -427.8157 -2.7283 -2.7623
0.0078 1.89 575 0.0135 -1.4891 -13.3323 0.9963 11.8432 -410.0224 -427.5704 -2.7309 -2.7645
0.0043 1.97 600 0.0135 -1.4818 -13.3376 0.9963 11.8558 -410.0757 -427.4978 -2.7305 -2.7643

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2