|
import argparse |
|
import hashlib |
|
import itertools |
|
import json |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from huggingface_hub import HfFolder, Repository, whoami |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import (AutoencoderKL, DDIMScheduler, DDPMScheduler, |
|
StableDiffusionInpaintPipeline, UNet2DConditionModel) |
|
from diffusers.optimization import get_scheduler |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained vae or vae identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default="fp16", |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
"--save_sample_negative_prompt", |
|
type=str, |
|
default=None, |
|
help="The negative prompt used to generate sample outputs to save.", |
|
) |
|
parser.add_argument( |
|
"--n_save_sample", |
|
type=int, |
|
default=4, |
|
help="The number of samples to save.", |
|
) |
|
parser.add_argument( |
|
"--save_guidance_scale", |
|
type=float, |
|
default=7.5, |
|
help="CFG for save sample.", |
|
) |
|
parser.add_argument( |
|
"--save_infer_steps", |
|
type=int, |
|
default=50, |
|
help="The number of inference steps for save sample.", |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If not have enough images, additional images will be" |
|
" sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="text-inversion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" |
|
) |
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument("--log_interval", type=int, default=10, help="Log every N steps.") |
|
parser.add_argument("--save_interval", type=int, default=10_000, help="Save weights every N steps.") |
|
parser.add_argument("--save_min_steps", type=int, default=0, help="Start saving weights after N steps.") |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
parser.add_argument("--not_cache_latents", action="store_true", help="Do not precompute and cache latents from VAE.") |
|
parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.") |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--concepts_list", |
|
type=str, |
|
default=None, |
|
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
|
|
def get_cutout_holes(height, width, min_holes=8, max_holes=32, min_height=32, max_height=128, min_width=32, max_width=128): |
|
holes = [] |
|
for _n in range(random.randint(min_holes, max_holes)): |
|
hole_height = random.randint(min_height, max_height) |
|
hole_width = random.randint(min_width, max_width) |
|
y1 = random.randint(0, height - hole_height) |
|
x1 = random.randint(0, width - hole_width) |
|
y2 = y1 + hole_height |
|
x2 = x1 + hole_width |
|
holes.append((x1, y1, x2, y2)) |
|
return holes |
|
|
|
|
|
def generate_random_mask(image): |
|
mask = torch.zeros_like(image[:1]) |
|
holes = get_cutout_holes(mask.shape[1], mask.shape[2]) |
|
for (x1, y1, x2, y2) in holes: |
|
mask[:, y1:y2, x1:x2] = 1. |
|
if random.uniform(0, 1) < 0.25: |
|
mask.fill_(1.) |
|
masked_image = image * (mask < 0.5) |
|
return mask, masked_image |
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
concepts_list, |
|
tokenizer, |
|
with_prior_preservation=True, |
|
size=512, |
|
center_crop=False, |
|
num_class_images=None, |
|
hflip=False |
|
): |
|
self.size = size |
|
self.center_crop = center_crop |
|
self.tokenizer = tokenizer |
|
self.with_prior_preservation = with_prior_preservation |
|
self.instance_images_path = [] |
|
self.class_images_path = [] |
|
|
|
for concept in concepts_list: |
|
inst_img_path = [(x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file()] |
|
self.instance_images_path.extend(inst_img_path) |
|
|
|
if with_prior_preservation: |
|
class_img_path = [(x, concept["class_prompt"]) for x in Path(concept["class_data_dir"]).iterdir() if x.is_file()] |
|
self.class_images_path.extend(class_img_path[:num_class_images]) |
|
|
|
random.shuffle(self.instance_images_path) |
|
self.num_instance_images = len(self.instance_images_path) |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.RandomHorizontalFlip(0.5 * hflip), |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_path, instance_prompt = self.instance_images_path[index % self.num_instance_images] |
|
instance_image = Image.open(instance_path) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
example["instance_masks"], example["instance_masked_images"] = generate_random_mask(example["instance_images"]) |
|
example["instance_prompt_ids"] = self.tokenizer( |
|
instance_prompt, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
).input_ids |
|
|
|
if self.with_prior_preservation: |
|
class_path, class_prompt = self.class_images_path[index % self.num_class_images] |
|
class_image = Image.open(class_path) |
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_masks"], example["class_masked_images"] = generate_random_mask(example["class_images"]) |
|
example["class_prompt_ids"] = self.tokenizer( |
|
class_prompt, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
class LatentsDataset(Dataset): |
|
def __init__(self, latents_cache, text_encoder_cache): |
|
self.latents_cache = latents_cache |
|
self.text_encoder_cache = text_encoder_cache |
|
|
|
def __len__(self): |
|
return len(self.latents_cache) |
|
|
|
def __getitem__(self, index): |
|
return self.latents_cache[index], self.text_encoder_cache[index] |
|
|
|
|
|
class AverageMeter: |
|
def __init__(self, name=None): |
|
self.name = name |
|
self.reset() |
|
|
|
def reset(self): |
|
self.sum = self.count = self.avg = 0 |
|
|
|
def update(self, val, n=1): |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
if token is None: |
|
token = HfFolder.get_token() |
|
if organization is None: |
|
username = whoami(token)["name"] |
|
return f"{username}/{model_id}" |
|
else: |
|
return f"{organization}/{model_id}" |
|
|
|
|
|
def main(args): |
|
logging_dir = Path(args.output_dir, "0", args.logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with="tensorboard", |
|
logging_dir=logging_dir, |
|
) |
|
|
|
|
|
|
|
|
|
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: |
|
raise ValueError( |
|
"Gradient accumulation is not supported when training the text encoder in distributed training. " |
|
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future." |
|
) |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
if args.concepts_list is None: |
|
args.concepts_list = [ |
|
{ |
|
"instance_prompt": args.instance_prompt, |
|
"class_prompt": args.class_prompt, |
|
"instance_data_dir": args.instance_data_dir, |
|
"class_data_dir": args.class_data_dir |
|
} |
|
] |
|
else: |
|
with open(args.concepts_list, "r") as f: |
|
args.concepts_list = json.load(f) |
|
|
|
if args.with_prior_preservation: |
|
pipeline = None |
|
for concept in args.concepts_list: |
|
class_images_dir = Path(concept["class_data_dir"]) |
|
class_images_dir.mkdir(parents=True, exist_ok=True) |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 |
|
if pipeline is None: |
|
pipeline = StableDiffusionInpaintPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=AutoencoderKL.from_pretrained( |
|
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path, |
|
revision=None if args.pretrained_vae_name_or_path else args.revision |
|
), |
|
torch_dtype=torch_dtype, |
|
safety_checker=None, |
|
revision=args.revision |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
pipeline.to(accelerator.device) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(concept["class_prompt"], num_new_images) |
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) |
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader) |
|
|
|
inp_img = Image.new("RGB", (512, 512), color=(0, 0, 0)) |
|
inp_mask = Image.new("L", (512, 512), color=255) |
|
|
|
with torch.autocast("cuda"), torch.inference_mode(): |
|
for example in tqdm( |
|
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process |
|
): |
|
images = pipeline( |
|
prompt=example["prompt"], |
|
image=inp_img, |
|
mask_image=inp_mask, |
|
num_inference_steps=args.save_infer_steps |
|
).images |
|
|
|
for i, image in enumerate(images): |
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest() |
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
image.save(image_filename) |
|
|
|
del pipeline |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
args.tokenizer_name, |
|
revision=args.revision, |
|
) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
) |
|
|
|
|
|
text_encoder = CLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=args.revision, |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="vae", |
|
revision=args.revision, |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="unet", |
|
revision=args.revision, |
|
torch_dtype=torch.float32 |
|
) |
|
|
|
vae.requires_grad_(False) |
|
if not args.train_text_encoder: |
|
text_encoder.requires_grad_(False) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
if args.train_text_encoder: |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
params_to_optimize = ( |
|
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() |
|
) |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
train_dataset = DreamBoothDataset( |
|
concepts_list=args.concepts_list, |
|
tokenizer=tokenizer, |
|
with_prior_preservation=args.with_prior_preservation, |
|
size=args.resolution, |
|
center_crop=args.center_crop, |
|
num_class_images=args.num_class_images, |
|
hflip=args.hflip |
|
) |
|
|
|
def collate_fn(examples): |
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
mask_values = [example["instance_masks"] for example in examples] |
|
masked_image_values = [example["instance_masked_images"] for example in examples] |
|
|
|
|
|
|
|
if args.with_prior_preservation: |
|
input_ids += [example["class_prompt_ids"] for example in examples] |
|
pixel_values += [example["class_images"] for example in examples] |
|
mask_values += [example["class_masks"] for example in examples] |
|
masked_image_values += [example["class_masked_images"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float() |
|
mask_values = torch.stack(mask_values).to(memory_format=torch.contiguous_format).float() |
|
masked_image_values = torch.stack(masked_image_values).to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = tokenizer.pad( |
|
{"input_ids": input_ids}, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
batch = { |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
"mask_values": mask_values, |
|
"masked_image_values": masked_image_values |
|
} |
|
return batch |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, pin_memory=True, num_workers=8 |
|
) |
|
|
|
weight_dtype = torch.float32 |
|
if args.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif args.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
if not args.train_text_encoder: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
if not args.not_cache_latents: |
|
latents_cache = [] |
|
text_encoder_cache = [] |
|
for batch in tqdm(train_dataloader, desc="Caching latents"): |
|
with torch.no_grad(): |
|
batch["pixel_values"] = batch["pixel_values"].to(accelerator.device, non_blocking=True, dtype=weight_dtype) |
|
batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True) |
|
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist) |
|
if args.train_text_encoder: |
|
text_encoder_cache.append(batch["input_ids"]) |
|
else: |
|
text_encoder_cache.append(text_encoder(batch["input_ids"])[0]) |
|
train_dataset = LatentsDataset(latents_cache, text_encoder_cache) |
|
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True) |
|
|
|
del vae |
|
if not args.train_text_encoder: |
|
del text_encoder |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
) |
|
|
|
if args.train_text_encoder: |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler |
|
) |
|
else: |
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("dreambooth") |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
def save_weights(step): |
|
|
|
if accelerator.is_main_process: |
|
if args.train_text_encoder: |
|
text_enc_model = accelerator.unwrap_model(text_encoder) |
|
else: |
|
text_enc_model = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision) |
|
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) |
|
pipeline = StableDiffusionInpaintPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=accelerator.unwrap_model(unet), |
|
text_encoder=text_enc_model, |
|
vae=AutoencoderKL.from_pretrained( |
|
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path, |
|
subfolder=None if args.pretrained_vae_name_or_path else "vae", |
|
revision=None if args.pretrained_vae_name_or_path else args.revision |
|
), |
|
safety_checker=None, |
|
scheduler=scheduler, |
|
torch_dtype=torch.float16, |
|
revision=args.revision, |
|
) |
|
save_dir = os.path.join(args.output_dir, f"{step}") |
|
pipeline.save_pretrained(save_dir) |
|
with open(os.path.join(save_dir, "args.json"), "w") as f: |
|
json.dump(args.__dict__, f, indent=2) |
|
|
|
shutil.copy("train_inpainting_dreambooth.py", save_dir) |
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
for idx, concept in enumerate(args.concepts_list): |
|
g_cuda = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
sample_dir = os.path.join(save_dir, "samples", str(idx)) |
|
os.makedirs(sample_dir, exist_ok=True) |
|
inp_img = Image.new("RGB", (512, 512), color=(0, 0, 0)) |
|
inp_mask = Image.new("L", (512, 512), color=255) |
|
with torch.autocast("cuda"), torch.inference_mode(): |
|
for i in tqdm(range(args.n_save_sample), desc="Generating samples"): |
|
images = pipeline( |
|
prompt=concept["instance_prompt"], |
|
image=inp_img, |
|
mask_image=inp_mask, |
|
negative_prompt=args.save_sample_negative_prompt, |
|
guidance_scale=args.save_guidance_scale, |
|
num_inference_steps=args.save_infer_steps, |
|
generator=g_cuda |
|
).images |
|
images[0].save(os.path.join(sample_dir, f"{i}.png")) |
|
del pipeline |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
print(f"[*] Weights saved at {save_dir}") |
|
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description("Steps") |
|
global_step = 0 |
|
loss_avg = AverageMeter() |
|
text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad() |
|
for epoch in range(args.num_train_epochs): |
|
unet.train() |
|
if args.train_text_encoder: |
|
text_encoder.train() |
|
random.shuffle(train_dataset.class_images_path) |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
with torch.no_grad(): |
|
if not args.not_cache_latents: |
|
latent_dist = batch[0][0] |
|
else: |
|
latent_dist = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist |
|
masked_latent_dist = vae.encode(batch["masked_image_values"].to(dtype=weight_dtype)).latent_dist |
|
latents = latent_dist.sample() * 0.18215 |
|
masked_image_latents = masked_latent_dist.sample() * 0.18215 |
|
mask = F.interpolate(batch["mask_values"], scale_factor=1 / 8) |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
with text_enc_context: |
|
if not args.not_cache_latents: |
|
if args.train_text_encoder: |
|
encoder_hidden_states = text_encoder(batch[0][1])[0] |
|
else: |
|
encoder_hidden_states = batch[0][1] |
|
else: |
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
encoder_hidden_states = F.dropout(encoder_hidden_states, p=0.1) |
|
|
|
latent_model_input = torch.cat([noisy_latents, mask, masked_image_latents], dim=1) |
|
|
|
noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample |
|
|
|
if args.with_prior_preservation: |
|
|
|
noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) |
|
noise, noise_prior = torch.chunk(noise, 2, dim=0) |
|
|
|
|
|
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none").mean([1, 2, 3]).mean() |
|
|
|
|
|
prior_loss = F.mse_loss(noise_pred_prior.float(), noise_prior.float(), reduction="mean") |
|
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
else: |
|
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean") |
|
|
|
accelerator.backward(loss) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
loss_avg.update(loss.detach_(), bsz) |
|
|
|
if not global_step % args.log_interval: |
|
logs = {"loss": loss_avg.avg.item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step > 0 and not global_step % args.save_interval and global_step >= args.save_min_steps: |
|
save_weights(global_step) |
|
|
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
save_weights(global_step) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|