davidrd123's picture
Model card auto-generated by SimpleTuner
da68a5b verified
|
raw
history blame
6.98 kB
---
license: other
base_model: "terminusresearch/FluxBooru-v0.3"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'In the style of a c4ss4tt oil painting, A child wearing an elaborate blue silk dress with ruffles and white lace trim sits near a window, the fabric catching soft light.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'In the style of a c4ss4tt oil painting, A close portrait of a young child''s face with rosy cheeks and delicate features, gentle lighting from a nearby window.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'In the style of a c4ss4tt oil painting, Strong window light falls across a child''s face and shoulder, creating bold shadows on their blue dress.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'In the style of a c4ss4tt oil painting, A child in a blue hat stands by a window.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'In the style of a c4ss4tt oil painting, A woman in soft colors holds her baby close.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'In the style of a c4ss4tt oil painting, A woman in a detailed white lace dress reads while seated by a window with gauzy curtains, various textures visible in the furnishings.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'In the style of a c4ss4tt oil painting, A mother in a textured knit sweater checks her phone while her baby sleeps against her shoulder.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'In the style of a c4ss4tt oil painting, A mother cat grooms her kitten by a sunlit window, their fur catching the light.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
---
# Mary-Cassatt-Oil-CropsAndFull-Flux-LoKr-Slower-FluxBooru
This is a LyCORIS adapter derived from [terminusresearch/FluxBooru-v0.3](https://huggingface.co/terminusresearch/FluxBooru-v0.3).
No validation prompt was used during training.
None
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 0
- Training steps: 1200
- Learning rate: 0.0006
- Max grad norm: 0.1
- Effective batch size: 2
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_value=4.0'])
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### cassatt-combined-512
- Repeats: 15
- Total number of images: 74
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cassatt-combined-768
- Repeats: 15
- Total number of images: 74
- Total number of aspect buckets: 14
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cassatt-combined-1024
- Repeats: 5
- Total number of images: 74
- Total number of aspect buckets: 3
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cassatt-oil-1536
- Repeats: 5
- Total number of images: 73
- Total number of aspect buckets: 24
- Resolution: 2.359296 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'terminusresearch/FluxBooru-v0.3'
adapter_repo_id = 'davidrd123/Mary-Cassatt-Oil-CropsAndFull-Flux-LoKr-Slower-FluxBooru'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```