deepdml's picture
Model save
f1cf069 verified
|
raw
history blame
2.02 kB
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-small-mix-fr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: fr
          split: test
          args: fr
        metrics:
          - name: Wer
            type: wer
            value: 15.015790814663829

whisper-small-mix-fr

This model is a fine-tuned version of openai/whisper-small on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3092
  • Wer: 15.0158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.187 0.2 1000 0.3653 17.3498
0.1445 0.4 2000 0.3379 16.0480
0.1659 0.6 3000 0.3255 15.3772
0.1594 0.8 4000 0.3136 15.1959
0.1371 1.0 5000 0.3092 15.0158

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1