fix: modeling_deepseek.py should use `deepseek` instead of `deepseek_v2` architecture
#1
by
llllvvuu
- opened
- modeling_deepseek.py +374 -730
modeling_deepseek.py
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
# and OPT implementations in this library. It has been modified from its
|
6 |
# original forms to accommodate minor architectural differences compared
|
7 |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
-
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
11 |
# You may obtain a copy of the License at
|
@@ -34,17 +34,11 @@ from transformers.modeling_attn_mask_utils import (
|
|
34 |
AttentionMaskConverter,
|
35 |
_prepare_4d_attention_mask,
|
36 |
_prepare_4d_causal_attention_mask,
|
|
|
37 |
)
|
38 |
-
from transformers.modeling_outputs import
|
39 |
-
BaseModelOutputWithPast,
|
40 |
-
CausalLMOutputWithPast,
|
41 |
-
SequenceClassifierOutputWithPast,
|
42 |
-
)
|
43 |
from transformers.modeling_utils import PreTrainedModel
|
44 |
-
from transformers.pytorch_utils import
|
45 |
-
ALL_LAYERNORM_LAYERS,
|
46 |
-
is_torch_greater_or_equal_than_1_13,
|
47 |
-
)
|
48 |
from transformers.utils import (
|
49 |
add_start_docstrings,
|
50 |
add_start_docstrings_to_model_forward,
|
@@ -54,9 +48,8 @@ from transformers.utils import (
|
|
54 |
replace_return_docstrings,
|
55 |
)
|
56 |
from transformers.utils.import_utils import is_torch_fx_available
|
57 |
-
from .configuration_deepseek import
|
58 |
-
|
59 |
-
import numpy as np
|
60 |
|
61 |
if is_flash_attn_2_available():
|
62 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
@@ -74,16 +67,14 @@ if is_torch_fx_available():
|
|
74 |
|
75 |
logger = logging.get_logger(__name__)
|
76 |
|
77 |
-
_CONFIG_FOR_DOC = "
|
78 |
|
79 |
|
80 |
def _get_unpad_data(attention_mask):
|
81 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
82 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
83 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
84 |
-
cu_seqlens = F.pad(
|
85 |
-
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
86 |
-
)
|
87 |
return (
|
88 |
indices,
|
89 |
cu_seqlens,
|
@@ -91,10 +82,28 @@ def _get_unpad_data(attention_mask):
|
|
91 |
)
|
92 |
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def __init__(self, hidden_size, eps=1e-6):
|
96 |
"""
|
97 |
-
|
98 |
"""
|
99 |
super().__init__()
|
100 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
@@ -108,34 +117,29 @@ class DeepseekV2RMSNorm(nn.Module):
|
|
108 |
return self.weight * hidden_states.to(input_dtype)
|
109 |
|
110 |
|
111 |
-
ALL_LAYERNORM_LAYERS.append(
|
112 |
|
113 |
|
114 |
-
class
|
115 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
116 |
super().__init__()
|
117 |
|
118 |
self.dim = dim
|
119 |
self.max_position_embeddings = max_position_embeddings
|
120 |
self.base = base
|
121 |
-
inv_freq = 1.0 / (
|
122 |
-
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
123 |
-
)
|
124 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
125 |
|
126 |
# Build here to make `torch.jit.trace` work.
|
127 |
self._set_cos_sin_cache(
|
128 |
-
seq_len=max_position_embeddings,
|
129 |
-
device=self.inv_freq.device,
|
130 |
-
dtype=torch.get_default_dtype(),
|
131 |
)
|
132 |
self.max_seq_len_cached = None
|
133 |
|
|
|
134 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
135 |
self.max_seq_len_cached = seq_len
|
136 |
-
t = torch.arange(
|
137 |
-
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
138 |
-
)
|
139 |
|
140 |
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
141 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
@@ -154,26 +158,17 @@ class DeepseekV2RotaryEmbedding(nn.Module):
|
|
154 |
)
|
155 |
|
156 |
|
157 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->
|
158 |
-
class
|
159 |
-
"""
|
160 |
|
161 |
-
def __init__(
|
162 |
-
self,
|
163 |
-
dim,
|
164 |
-
max_position_embeddings=2048,
|
165 |
-
base=10000,
|
166 |
-
device=None,
|
167 |
-
scaling_factor=1.0,
|
168 |
-
):
|
169 |
self.scaling_factor = scaling_factor
|
170 |
super().__init__(dim, max_position_embeddings, base, device)
|
171 |
|
172 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
173 |
self.max_seq_len_cached = seq_len
|
174 |
-
t = torch.arange(
|
175 |
-
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
176 |
-
)
|
177 |
t = t / self.scaling_factor
|
178 |
|
179 |
freqs = torch.outer(t, self.inv_freq)
|
@@ -183,18 +178,11 @@ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
|
183 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
184 |
|
185 |
|
186 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->
|
187 |
-
class
|
188 |
-
"""
|
189 |
|
190 |
-
def __init__(
|
191 |
-
self,
|
192 |
-
dim,
|
193 |
-
max_position_embeddings=2048,
|
194 |
-
base=10000,
|
195 |
-
device=None,
|
196 |
-
scaling_factor=1.0,
|
197 |
-
):
|
198 |
self.scaling_factor = scaling_factor
|
199 |
super().__init__(dim, max_position_embeddings, base, device)
|
200 |
|
@@ -203,17 +191,12 @@ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
|
203 |
|
204 |
if seq_len > self.max_position_embeddings:
|
205 |
base = self.base * (
|
206 |
-
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
207 |
-
- (self.scaling_factor - 1)
|
208 |
) ** (self.dim / (self.dim - 2))
|
209 |
-
inv_freq = 1.0 / (
|
210 |
-
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
211 |
-
)
|
212 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
213 |
|
214 |
-
t = torch.arange(
|
215 |
-
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
216 |
-
)
|
217 |
|
218 |
freqs = torch.outer(t, self.inv_freq)
|
219 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
@@ -222,111 +205,6 @@ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
|
222 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
223 |
|
224 |
|
225 |
-
# Inverse dim formula to find dim based on number of rotations
|
226 |
-
def yarn_find_correction_dim(
|
227 |
-
num_rotations, dim, base=10000, max_position_embeddings=2048
|
228 |
-
):
|
229 |
-
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
230 |
-
2 * math.log(base)
|
231 |
-
)
|
232 |
-
|
233 |
-
|
234 |
-
# Find dim range bounds based on rotations
|
235 |
-
def yarn_find_correction_range(
|
236 |
-
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
237 |
-
):
|
238 |
-
low = math.floor(
|
239 |
-
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
240 |
-
)
|
241 |
-
high = math.ceil(
|
242 |
-
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
243 |
-
)
|
244 |
-
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
245 |
-
|
246 |
-
|
247 |
-
def yarn_get_mscale(scale=1, mscale=1):
|
248 |
-
if scale <= 1:
|
249 |
-
return 1.0
|
250 |
-
return 0.1 * mscale * math.log(scale) + 1.0
|
251 |
-
|
252 |
-
|
253 |
-
def yarn_linear_ramp_mask(min, max, dim):
|
254 |
-
if min == max:
|
255 |
-
max += 0.001 # Prevent singularity
|
256 |
-
|
257 |
-
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
258 |
-
ramp_func = torch.clamp(linear_func, 0, 1)
|
259 |
-
return ramp_func
|
260 |
-
|
261 |
-
|
262 |
-
class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
263 |
-
|
264 |
-
def __init__(
|
265 |
-
self,
|
266 |
-
dim,
|
267 |
-
max_position_embeddings=2048,
|
268 |
-
base=10000,
|
269 |
-
device=None,
|
270 |
-
scaling_factor=1.0,
|
271 |
-
original_max_position_embeddings=4096,
|
272 |
-
beta_fast=32,
|
273 |
-
beta_slow=1,
|
274 |
-
mscale=1,
|
275 |
-
mscale_all_dim=0,
|
276 |
-
):
|
277 |
-
self.scaling_factor = scaling_factor
|
278 |
-
self.original_max_position_embeddings = original_max_position_embeddings
|
279 |
-
self.beta_fast = beta_fast
|
280 |
-
self.beta_slow = beta_slow
|
281 |
-
self.mscale = mscale
|
282 |
-
self.mscale_all_dim = mscale_all_dim
|
283 |
-
super().__init__(dim, max_position_embeddings, base, device)
|
284 |
-
|
285 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
286 |
-
self.max_seq_len_cached = seq_len
|
287 |
-
dim = self.dim
|
288 |
-
|
289 |
-
freq_extra = 1.0 / (
|
290 |
-
self.base
|
291 |
-
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
292 |
-
)
|
293 |
-
freq_inter = 1.0 / (
|
294 |
-
self.scaling_factor
|
295 |
-
* self.base
|
296 |
-
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
297 |
-
)
|
298 |
-
|
299 |
-
low, high = yarn_find_correction_range(
|
300 |
-
self.beta_fast,
|
301 |
-
self.beta_slow,
|
302 |
-
dim,
|
303 |
-
self.base,
|
304 |
-
self.original_max_position_embeddings,
|
305 |
-
)
|
306 |
-
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
307 |
-
device=device, dtype=torch.float32
|
308 |
-
)
|
309 |
-
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
310 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
311 |
-
|
312 |
-
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
313 |
-
|
314 |
-
freqs = torch.outer(t, inv_freq)
|
315 |
-
|
316 |
-
_mscale = float(
|
317 |
-
yarn_get_mscale(self.scaling_factor, self.mscale)
|
318 |
-
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
319 |
-
)
|
320 |
-
|
321 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
322 |
-
self.register_buffer(
|
323 |
-
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
|
324 |
-
)
|
325 |
-
self.register_buffer(
|
326 |
-
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
|
327 |
-
)
|
328 |
-
|
329 |
-
|
330 |
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
331 |
def rotate_half(x):
|
332 |
"""Rotates half the hidden dims of the input."""
|
@@ -359,26 +237,17 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
|
359 |
"""
|
360 |
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
361 |
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
362 |
-
|
363 |
-
b, h, s, d = q.shape
|
364 |
-
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
365 |
-
|
366 |
-
b, h, s, d = k.shape
|
367 |
-
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
368 |
-
|
369 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
370 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
371 |
return q_embed, k_embed
|
372 |
|
373 |
|
374 |
-
class
|
375 |
-
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
376 |
super().__init__()
|
377 |
self.config = config
|
378 |
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
379 |
-
self.intermediate_size =
|
380 |
-
config.intermediate_size if intermediate_size is None else intermediate_size
|
381 |
-
)
|
382 |
|
383 |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
384 |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
@@ -386,7 +255,25 @@ class DeepseekV2MLP(nn.Module):
|
|
386 |
self.act_fn = ACT2FN[config.hidden_act]
|
387 |
|
388 |
def forward(self, x):
|
389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
return down_proj
|
391 |
|
392 |
|
@@ -396,75 +283,39 @@ class MoEGate(nn.Module):
|
|
396 |
self.config = config
|
397 |
self.top_k = config.num_experts_per_tok
|
398 |
self.n_routed_experts = config.n_routed_experts
|
399 |
-
|
400 |
self.scoring_func = config.scoring_func
|
401 |
self.alpha = config.aux_loss_alpha
|
402 |
self.seq_aux = config.seq_aux
|
403 |
-
self.topk_method = config.topk_method
|
404 |
-
self.n_group = config.n_group
|
405 |
-
self.topk_group = config.topk_group
|
406 |
|
407 |
# topk selection algorithm
|
408 |
self.norm_topk_prob = config.norm_topk_prob
|
409 |
self.gating_dim = config.hidden_size
|
410 |
-
self.weight = nn.Parameter(
|
411 |
-
torch.empty((self.n_routed_experts, self.gating_dim))
|
412 |
-
)
|
413 |
self.reset_parameters()
|
414 |
|
415 |
def reset_parameters(self) -> None:
|
416 |
-
import torch.nn.init
|
417 |
-
|
418 |
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
419 |
-
|
420 |
def forward(self, hidden_states):
|
421 |
-
bsz, seq_len, h = hidden_states.shape
|
422 |
### compute gating score
|
423 |
hidden_states = hidden_states.view(-1, h)
|
424 |
-
logits = F.linear(
|
425 |
-
|
426 |
-
|
427 |
-
if self.scoring_func == "softmax":
|
428 |
-
scores = logits.softmax(dim=-1, dtype=torch.float32)
|
429 |
else:
|
430 |
-
raise NotImplementedError(
|
431 |
-
|
432 |
-
)
|
433 |
-
|
434 |
### select top-k experts
|
435 |
-
|
436 |
-
|
437 |
-
scores, k=self.top_k, dim=-1, sorted=False
|
438 |
-
)
|
439 |
-
elif self.topk_method == "group_limited_greedy":
|
440 |
-
group_scores = (
|
441 |
-
scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
|
442 |
-
) # [n, n_group]
|
443 |
-
group_idx = torch.topk(
|
444 |
-
group_scores, k=self.topk_group, dim=-1, sorted=False
|
445 |
-
)[
|
446 |
-
1
|
447 |
-
] # [n, top_k_group]
|
448 |
-
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
449 |
-
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
450 |
-
score_mask = (
|
451 |
-
group_mask.unsqueeze(-1)
|
452 |
-
.expand(
|
453 |
-
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
454 |
-
)
|
455 |
-
.reshape(bsz * seq_len, -1)
|
456 |
-
) # [n, e]
|
457 |
-
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
458 |
-
topk_weight, topk_idx = torch.topk(
|
459 |
-
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
460 |
-
)
|
461 |
-
|
462 |
### norm gate to sum 1
|
463 |
if self.top_k > 1 and self.norm_topk_prob:
|
464 |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
465 |
topk_weight = topk_weight / denominator
|
466 |
-
|
467 |
-
topk_weight = topk_weight * self.routed_scaling_factor
|
468 |
### expert-level computation auxiliary loss
|
469 |
if self.training and self.alpha > 0.0:
|
470 |
scores_for_aux = scores
|
@@ -473,21 +324,11 @@ class MoEGate(nn.Module):
|
|
473 |
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
474 |
if self.seq_aux:
|
475 |
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
476 |
-
ce = torch.zeros(
|
477 |
-
|
478 |
-
)
|
479 |
-
ce.scatter_add_(
|
480 |
-
1,
|
481 |
-
topk_idx_for_aux_loss,
|
482 |
-
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
|
483 |
-
).div_(seq_len * aux_topk / self.n_routed_experts)
|
484 |
-
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
|
485 |
-
dim=1
|
486 |
-
).mean() * self.alpha
|
487 |
else:
|
488 |
-
mask_ce = F.one_hot(
|
489 |
-
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
|
490 |
-
)
|
491 |
ce = mask_ce.float().mean(0)
|
492 |
Pi = scores_for_aux.mean(0)
|
493 |
fi = ce * self.n_routed_experts
|
@@ -499,10 +340,9 @@ class MoEGate(nn.Module):
|
|
499 |
|
500 |
class AddAuxiliaryLoss(torch.autograd.Function):
|
501 |
"""
|
502 |
-
The trick function of adding auxiliary (aux) loss,
|
503 |
which includes the gradient of the aux loss during backpropagation.
|
504 |
"""
|
505 |
-
|
506 |
@staticmethod
|
507 |
def forward(ctx, x, loss):
|
508 |
assert loss.numel() == 1
|
@@ -516,53 +356,22 @@ class AddAuxiliaryLoss(torch.autograd.Function):
|
|
516 |
if ctx.required_aux_loss:
|
517 |
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
518 |
return grad_output, grad_loss
|
519 |
-
|
520 |
-
|
521 |
-
class
|
522 |
"""
|
523 |
A mixed expert module containing shared experts.
|
524 |
"""
|
525 |
-
|
526 |
def __init__(self, config):
|
527 |
super().__init__()
|
528 |
self.config = config
|
529 |
self.num_experts_per_tok = config.num_experts_per_tok
|
530 |
-
|
531 |
-
if hasattr(config, "ep_size") and config.ep_size > 1:
|
532 |
-
assert config.ep_size == dist.get_world_size()
|
533 |
-
self.ep_size = config.ep_size
|
534 |
-
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
535 |
-
self.ep_rank = dist.get_rank()
|
536 |
-
self.experts = nn.ModuleList(
|
537 |
-
[
|
538 |
-
(
|
539 |
-
DeepseekV2MLP(
|
540 |
-
config, intermediate_size=config.moe_intermediate_size
|
541 |
-
)
|
542 |
-
if i >= self.ep_rank * self.experts_per_rank
|
543 |
-
and i < (self.ep_rank + 1) * self.experts_per_rank
|
544 |
-
else None
|
545 |
-
)
|
546 |
-
for i in range(config.n_routed_experts)
|
547 |
-
]
|
548 |
-
)
|
549 |
-
else:
|
550 |
-
self.ep_size = 1
|
551 |
-
self.experts_per_rank = config.n_routed_experts
|
552 |
-
self.ep_rank = 0
|
553 |
-
self.experts = nn.ModuleList(
|
554 |
-
[
|
555 |
-
DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)
|
556 |
-
for i in range(config.n_routed_experts)
|
557 |
-
]
|
558 |
-
)
|
559 |
self.gate = MoEGate(config)
|
560 |
if config.n_shared_experts is not None:
|
561 |
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
562 |
-
self.shared_experts =
|
563 |
-
|
564 |
-
)
|
565 |
-
|
566 |
def forward(self, hidden_states):
|
567 |
identity = hidden_states
|
568 |
orig_shape = hidden_states.shape
|
@@ -570,96 +379,36 @@ class DeepseekV2MoE(nn.Module):
|
|
570 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
571 |
flat_topk_idx = topk_idx.view(-1)
|
572 |
if self.training:
|
573 |
-
hidden_states = hidden_states.repeat_interleave(
|
574 |
-
self.num_experts_per_tok, dim=0
|
575 |
-
)
|
576 |
y = torch.empty_like(hidden_states)
|
577 |
for i, expert in enumerate(self.experts):
|
578 |
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
579 |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
580 |
-
y =
|
581 |
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
582 |
else:
|
583 |
-
y = self.moe_infer(hidden_states,
|
584 |
if self.config.n_shared_experts is not None:
|
585 |
y = y + self.shared_experts(identity)
|
586 |
return y
|
587 |
-
|
588 |
@torch.no_grad()
|
589 |
-
def moe_infer(self, x,
|
590 |
-
|
591 |
-
|
592 |
-
tokens_per_expert =
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
598 |
-
tokens_per_expert_group = tokens_per_expert.new_empty(
|
599 |
-
tokens_per_expert.shape[0]
|
600 |
-
)
|
601 |
-
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
602 |
-
output_splits = (
|
603 |
-
tokens_per_expert_group.view(self.ep_size, -1)
|
604 |
-
.sum(1)
|
605 |
-
.cpu()
|
606 |
-
.numpy()
|
607 |
-
.tolist()
|
608 |
-
)
|
609 |
-
gathered_tokens = sorted_tokens.new_empty(
|
610 |
-
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
611 |
-
)
|
612 |
-
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
613 |
-
dist.all_to_all(
|
614 |
-
list(gathered_tokens.split(output_splits)),
|
615 |
-
list(sorted_tokens.split(input_split_sizes)),
|
616 |
-
)
|
617 |
-
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
618 |
-
self.ep_size, self.experts_per_rank
|
619 |
-
).sum(dim=0)
|
620 |
-
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
621 |
-
s = 0
|
622 |
-
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
623 |
-
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
624 |
-
s += k
|
625 |
-
gatherd_idxs = gatherd_idxs.argsort()
|
626 |
-
sorted_tokens = gathered_tokens[gatherd_idxs]
|
627 |
-
tokens_per_expert = tokens_per_expert_post_gather
|
628 |
-
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
629 |
-
|
630 |
-
outputs = []
|
631 |
-
start_idx = 0
|
632 |
-
for i, num_tokens in enumerate(tokens_per_expert):
|
633 |
-
end_idx = start_idx + num_tokens
|
634 |
-
if num_tokens == 0:
|
635 |
continue
|
636 |
-
expert = self.experts[i
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
start_idx
|
641 |
-
|
642 |
-
|
643 |
-
if self.ep_size > 1:
|
644 |
-
new_x = torch.empty_like(outs)
|
645 |
-
new_x[gatherd_idxs] = outs
|
646 |
-
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
647 |
-
dist.all_to_all(
|
648 |
-
list(gathered_tokens.split(input_split_sizes)),
|
649 |
-
list(new_x.split(output_splits)),
|
650 |
-
)
|
651 |
-
outs = gathered_tokens
|
652 |
-
|
653 |
-
new_x = torch.empty_like(outs)
|
654 |
-
new_x[idxs] = outs
|
655 |
-
final_out = (
|
656 |
-
new_x.view(*topk_ids.shape, -1)
|
657 |
-
.type(topk_weight.dtype)
|
658 |
-
.mul_(topk_weight.unsqueeze(dim=-1))
|
659 |
-
.sum(dim=1)
|
660 |
-
.type(new_x.dtype)
|
661 |
-
)
|
662 |
-
return final_out
|
663 |
|
664 |
|
665 |
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
@@ -671,17 +420,15 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
671 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
672 |
if n_rep == 1:
|
673 |
return hidden_states
|
674 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
675 |
-
batch, num_key_value_heads, n_rep, slen, head_dim
|
676 |
-
)
|
677 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
678 |
|
679 |
|
680 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->
|
681 |
-
class
|
682 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
683 |
|
684 |
-
def __init__(self, config:
|
685 |
super().__init__()
|
686 |
self.config = config
|
687 |
self.layer_idx = layer_idx
|
@@ -695,63 +442,29 @@ class DeepseekV2Attention(nn.Module):
|
|
695 |
self.attention_dropout = config.attention_dropout
|
696 |
self.hidden_size = config.hidden_size
|
697 |
self.num_heads = config.num_attention_heads
|
698 |
-
|
|
|
|
|
699 |
self.max_position_embeddings = config.max_position_embeddings
|
700 |
self.rope_theta = config.rope_theta
|
701 |
-
self.q_lora_rank = config.q_lora_rank
|
702 |
-
self.qk_rope_head_dim = config.qk_rope_head_dim
|
703 |
-
self.kv_lora_rank = config.kv_lora_rank
|
704 |
-
self.v_head_dim = config.v_head_dim
|
705 |
-
self.qk_nope_head_dim = config.qk_nope_head_dim
|
706 |
-
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
707 |
-
|
708 |
self.is_causal = True
|
709 |
|
710 |
-
if self.
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
else:
|
715 |
-
self.q_a_proj = nn.Linear(
|
716 |
-
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
717 |
-
)
|
718 |
-
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
|
719 |
-
self.q_b_proj = nn.Linear(
|
720 |
-
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
721 |
)
|
722 |
|
723 |
-
self.
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
)
|
728 |
-
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
|
729 |
-
self.kv_b_proj = nn.Linear(
|
730 |
-
config.kv_lora_rank,
|
731 |
-
self.num_heads
|
732 |
-
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
733 |
-
bias=False,
|
734 |
-
)
|
735 |
-
|
736 |
-
self.o_proj = nn.Linear(
|
737 |
-
self.num_heads * self.v_head_dim,
|
738 |
-
self.hidden_size,
|
739 |
-
bias=config.attention_bias,
|
740 |
-
)
|
741 |
self._init_rope()
|
742 |
|
743 |
-
self.softmax_scale = self.q_head_dim ** (-0.5)
|
744 |
-
if self.config.rope_scaling is not None:
|
745 |
-
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
746 |
-
scaling_factor = self.config.rope_scaling["factor"]
|
747 |
-
if mscale_all_dim:
|
748 |
-
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
749 |
-
self.softmax_scale = self.softmax_scale * mscale * mscale
|
750 |
-
|
751 |
def _init_rope(self):
|
752 |
if self.config.rope_scaling is None:
|
753 |
-
self.rotary_emb =
|
754 |
-
self.
|
755 |
max_position_embeddings=self.max_position_embeddings,
|
756 |
base=self.rope_theta,
|
757 |
)
|
@@ -759,47 +472,24 @@ class DeepseekV2Attention(nn.Module):
|
|
759 |
scaling_type = self.config.rope_scaling["type"]
|
760 |
scaling_factor = self.config.rope_scaling["factor"]
|
761 |
if scaling_type == "linear":
|
762 |
-
self.rotary_emb =
|
763 |
-
self.
|
764 |
max_position_embeddings=self.max_position_embeddings,
|
765 |
scaling_factor=scaling_factor,
|
766 |
base=self.rope_theta,
|
767 |
)
|
768 |
elif scaling_type == "dynamic":
|
769 |
-
self.rotary_emb =
|
770 |
-
self.
|
771 |
max_position_embeddings=self.max_position_embeddings,
|
772 |
scaling_factor=scaling_factor,
|
773 |
base=self.rope_theta,
|
774 |
)
|
775 |
-
elif scaling_type == "yarn":
|
776 |
-
kwargs = {
|
777 |
-
key: self.config.rope_scaling[key]
|
778 |
-
for key in [
|
779 |
-
"original_max_position_embeddings",
|
780 |
-
"beta_fast",
|
781 |
-
"beta_slow",
|
782 |
-
"mscale",
|
783 |
-
"mscale_all_dim",
|
784 |
-
]
|
785 |
-
if key in self.config.rope_scaling
|
786 |
-
}
|
787 |
-
self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
|
788 |
-
self.qk_rope_head_dim,
|
789 |
-
max_position_embeddings=self.max_position_embeddings,
|
790 |
-
scaling_factor=scaling_factor,
|
791 |
-
base=self.rope_theta,
|
792 |
-
**kwargs,
|
793 |
-
)
|
794 |
else:
|
795 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
796 |
|
797 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
798 |
-
return (
|
799 |
-
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
800 |
-
.transpose(1, 2)
|
801 |
-
.contiguous()
|
802 |
-
)
|
803 |
|
804 |
def forward(
|
805 |
self,
|
@@ -815,32 +505,36 @@ class DeepseekV2Attention(nn.Module):
|
|
815 |
warnings.warn(
|
816 |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
817 |
)
|
|
|
818 |
bsz, q_len, _ = hidden_states.size()
|
819 |
|
820 |
-
if self.
|
821 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
else:
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
827 |
-
)
|
828 |
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
)
|
833 |
-
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
834 |
-
kv = (
|
835 |
-
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
836 |
-
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
837 |
-
.transpose(1, 2)
|
838 |
-
)
|
839 |
|
840 |
-
|
841 |
-
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
842 |
-
)
|
843 |
-
kv_seq_len = value_states.shape[-2]
|
844 |
if past_key_value is not None:
|
845 |
if self.layer_idx is None:
|
846 |
raise ValueError(
|
@@ -850,32 +544,23 @@ class DeepseekV2Attention(nn.Module):
|
|
850 |
)
|
851 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
852 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
853 |
|
854 |
-
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
855 |
-
|
856 |
-
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
857 |
-
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
858 |
-
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
859 |
-
|
860 |
-
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
861 |
-
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
862 |
-
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
863 |
if past_key_value is not None:
|
864 |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
865 |
-
key_states, value_states = past_key_value.update(
|
866 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
867 |
-
)
|
868 |
|
869 |
-
|
870 |
-
|
871 |
-
|
|
|
872 |
|
873 |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
874 |
raise ValueError(
|
875 |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
876 |
f" {attn_weights.size()}"
|
877 |
)
|
878 |
-
|
879 |
if attention_mask is not None:
|
880 |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
881 |
raise ValueError(
|
@@ -884,25 +569,26 @@ class DeepseekV2Attention(nn.Module):
|
|
884 |
attn_weights = attn_weights + attention_mask
|
885 |
|
886 |
# upcast attention to fp32
|
887 |
-
attn_weights = nn.functional.softmax(
|
888 |
-
|
889 |
-
).to(query_states.dtype)
|
890 |
-
attn_weights = nn.functional.dropout(
|
891 |
-
attn_weights, p=self.attention_dropout, training=self.training
|
892 |
-
)
|
893 |
attn_output = torch.matmul(attn_weights, value_states)
|
894 |
|
895 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.
|
896 |
raise ValueError(
|
897 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.
|
898 |
f" {attn_output.size()}"
|
899 |
)
|
900 |
|
901 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
902 |
|
903 |
-
attn_output = attn_output.reshape(bsz, q_len, self.
|
904 |
|
905 |
-
|
|
|
|
|
|
|
|
|
|
|
906 |
|
907 |
if not output_attentions:
|
908 |
attn_weights = None
|
@@ -910,10 +596,10 @@ class DeepseekV2Attention(nn.Module):
|
|
910 |
return attn_output, attn_weights, past_key_value
|
911 |
|
912 |
|
913 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->
|
914 |
-
class
|
915 |
"""
|
916 |
-
|
917 |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
918 |
flash attention and deal with padding tokens in case the input contains any of them.
|
919 |
"""
|
@@ -936,7 +622,7 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
936 |
use_cache: bool = False,
|
937 |
**kwargs,
|
938 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
939 |
-
#
|
940 |
if "padding_mask" in kwargs:
|
941 |
warnings.warn(
|
942 |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
@@ -949,57 +635,26 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
949 |
|
950 |
bsz, q_len, _ = hidden_states.size()
|
951 |
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
956 |
-
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
957 |
-
q_nope, q_pe = torch.split(
|
958 |
-
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
959 |
-
)
|
960 |
|
961 |
# Flash attention requires the input to have the shape
|
962 |
# batch_size x seq_length x head_dim x hidden_dim
|
963 |
# therefore we just need to keep the original shape
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
)
|
968 |
-
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
969 |
-
kv = (
|
970 |
-
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
971 |
-
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
972 |
-
.transpose(1, 2)
|
973 |
-
)
|
974 |
-
|
975 |
-
k_nope, value_states = torch.split(
|
976 |
-
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
977 |
-
)
|
978 |
-
kv_seq_len = value_states.shape[-2]
|
979 |
|
980 |
-
kv_seq_len =
|
981 |
if past_key_value is not None:
|
982 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
983 |
-
|
984 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
985 |
-
|
986 |
-
|
987 |
-
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
988 |
-
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
989 |
-
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
990 |
-
|
991 |
-
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
992 |
-
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
993 |
-
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
994 |
-
|
995 |
-
if self.q_head_dim != self.v_head_dim:
|
996 |
-
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
997 |
|
998 |
if past_key_value is not None:
|
999 |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1000 |
-
key_states, value_states = past_key_value.update(
|
1001 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
1002 |
-
)
|
1003 |
|
1004 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
1005 |
# to be able to avoid many of these transpose/reshape/view.
|
@@ -1013,7 +668,7 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1013 |
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
1014 |
# cast them back in the correct dtype just to be sure everything works as expected.
|
1015 |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
1016 |
-
# in fp32. (
|
1017 |
|
1018 |
input_dtype = query_states.dtype
|
1019 |
if input_dtype == torch.float32:
|
@@ -1023,7 +678,7 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1023 |
elif torch.is_autocast_enabled():
|
1024 |
target_dtype = torch.get_autocast_gpu_dtype()
|
1025 |
else:
|
1026 |
-
target_dtype = self.q_proj.weight.dtype
|
1027 |
|
1028 |
logger.warning_once(
|
1029 |
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
@@ -1036,20 +691,10 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1036 |
value_states = value_states.to(target_dtype)
|
1037 |
|
1038 |
attn_output = self._flash_attention_forward(
|
1039 |
-
query_states,
|
1040 |
-
key_states,
|
1041 |
-
value_states,
|
1042 |
-
attention_mask,
|
1043 |
-
q_len,
|
1044 |
-
dropout=dropout_rate,
|
1045 |
-
softmax_scale=self.softmax_scale,
|
1046 |
)
|
1047 |
-
if self.q_head_dim != self.v_head_dim:
|
1048 |
-
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
1049 |
|
1050 |
-
attn_output = attn_output.reshape(
|
1051 |
-
bsz, q_len, self.num_heads * self.v_head_dim
|
1052 |
-
).contiguous()
|
1053 |
attn_output = self.o_proj(attn_output)
|
1054 |
|
1055 |
if not output_attentions:
|
@@ -1058,14 +703,7 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1058 |
return attn_output, attn_weights, past_key_value
|
1059 |
|
1060 |
def _flash_attention_forward(
|
1061 |
-
self,
|
1062 |
-
query_states,
|
1063 |
-
key_states,
|
1064 |
-
value_states,
|
1065 |
-
attention_mask,
|
1066 |
-
query_length,
|
1067 |
-
dropout=0.0,
|
1068 |
-
softmax_scale=None,
|
1069 |
):
|
1070 |
"""
|
1071 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
@@ -1089,20 +727,13 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1089 |
if not self._flash_attn_uses_top_left_mask:
|
1090 |
causal = self.is_causal
|
1091 |
else:
|
1092 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in
|
1093 |
causal = self.is_causal and query_length != 1
|
1094 |
|
1095 |
# Contains at least one padding token in the sequence
|
1096 |
if attention_mask is not None:
|
1097 |
batch_size = query_states.shape[0]
|
1098 |
-
(
|
1099 |
-
query_states,
|
1100 |
-
key_states,
|
1101 |
-
value_states,
|
1102 |
-
indices_q,
|
1103 |
-
cu_seq_lens,
|
1104 |
-
max_seq_lens,
|
1105 |
-
) = self._upad_input(
|
1106 |
query_states, key_states, value_states, attention_mask, query_length
|
1107 |
)
|
1108 |
|
@@ -1122,39 +753,27 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1122 |
causal=causal,
|
1123 |
)
|
1124 |
|
1125 |
-
attn_output = pad_input(
|
1126 |
-
attn_output_unpad, indices_q, batch_size, query_length
|
1127 |
-
)
|
1128 |
else:
|
1129 |
attn_output = flash_attn_func(
|
1130 |
-
query_states,
|
1131 |
-
key_states,
|
1132 |
-
value_states,
|
1133 |
-
dropout,
|
1134 |
-
softmax_scale=softmax_scale,
|
1135 |
-
causal=causal,
|
1136 |
)
|
1137 |
|
1138 |
return attn_output
|
1139 |
|
1140 |
-
def _upad_input(
|
1141 |
-
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1142 |
-
):
|
1143 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1144 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1145 |
|
1146 |
key_layer = index_first_axis(
|
1147 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1148 |
-
indices_k,
|
1149 |
)
|
1150 |
value_layer = index_first_axis(
|
1151 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1152 |
-
indices_k,
|
1153 |
)
|
1154 |
if query_length == kv_seq_len:
|
1155 |
query_layer = index_first_axis(
|
1156 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
1157 |
-
indices_k,
|
1158 |
)
|
1159 |
cu_seqlens_q = cu_seqlens_k
|
1160 |
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
@@ -1169,9 +788,7 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1169 |
else:
|
1170 |
# The -q_len: slice assumes left padding.
|
1171 |
attention_mask = attention_mask[:, -query_length:]
|
1172 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1173 |
-
query_layer, attention_mask
|
1174 |
-
)
|
1175 |
|
1176 |
return (
|
1177 |
query_layer,
|
@@ -1183,36 +800,113 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
1183 |
)
|
1184 |
|
1185 |
|
1186 |
-
|
1187 |
-
|
1188 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1189 |
}
|
1190 |
|
1191 |
|
1192 |
-
class
|
1193 |
-
def __init__(self, config:
|
1194 |
super().__init__()
|
1195 |
self.hidden_size = config.hidden_size
|
1196 |
|
1197 |
-
self.self_attn =
|
1198 |
-
config=config, layer_idx=layer_idx
|
1199 |
-
)
|
1200 |
|
1201 |
-
self.mlp = (
|
1202 |
-
|
1203 |
-
|
1204 |
-
|
1205 |
-
|
1206 |
-
and layer_idx % config.moe_layer_freq == 0
|
1207 |
-
)
|
1208 |
-
else DeepseekV2MLP(config)
|
1209 |
-
)
|
1210 |
-
self.input_layernorm = DeepseekV2RMSNorm(
|
1211 |
-
config.hidden_size, eps=config.rms_norm_eps
|
1212 |
-
)
|
1213 |
-
self.post_attention_layernorm = DeepseekV2RMSNorm(
|
1214 |
-
config.hidden_size, eps=config.rms_norm_eps
|
1215 |
-
)
|
1216 |
|
1217 |
def forward(
|
1218 |
self,
|
@@ -1223,9 +917,7 @@ class DeepseekV2DecoderLayer(nn.Module):
|
|
1223 |
output_attentions: Optional[bool] = False,
|
1224 |
use_cache: Optional[bool] = False,
|
1225 |
**kwargs,
|
1226 |
-
) -> Tuple[
|
1227 |
-
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
1228 |
-
]:
|
1229 |
"""
|
1230 |
Args:
|
1231 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
@@ -1277,7 +969,7 @@ class DeepseekV2DecoderLayer(nn.Module):
|
|
1277 |
return outputs
|
1278 |
|
1279 |
|
1280 |
-
|
1281 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1282 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1283 |
etc.)
|
@@ -1287,7 +979,7 @@ DeepseekV2_START_DOCSTRING = r"""
|
|
1287 |
and behavior.
|
1288 |
|
1289 |
Parameters:
|
1290 |
-
config ([`
|
1291 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1292 |
load the weights associated with the model, only the configuration. Check out the
|
1293 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
@@ -1295,16 +987,17 @@ DeepseekV2_START_DOCSTRING = r"""
|
|
1295 |
|
1296 |
|
1297 |
@add_start_docstrings(
|
1298 |
-
"The bare
|
1299 |
-
|
1300 |
)
|
1301 |
-
class
|
1302 |
-
config_class =
|
1303 |
base_model_prefix = "model"
|
1304 |
supports_gradient_checkpointing = True
|
1305 |
-
_no_split_modules = ["
|
1306 |
_skip_keys_device_placement = "past_key_values"
|
1307 |
_supports_flash_attn_2 = True
|
|
|
1308 |
_supports_cache_class = True
|
1309 |
|
1310 |
def _init_weights(self, module):
|
@@ -1319,7 +1012,7 @@ class DeepseekV2PreTrainedModel(PreTrainedModel):
|
|
1319 |
module.weight.data[module.padding_idx].zero_()
|
1320 |
|
1321 |
|
1322 |
-
|
1323 |
Args:
|
1324 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1325 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
@@ -1390,33 +1083,29 @@ DeepseekV2_INPUTS_DOCSTRING = r"""
|
|
1390 |
|
1391 |
|
1392 |
@add_start_docstrings(
|
1393 |
-
"The bare
|
1394 |
-
|
1395 |
)
|
1396 |
-
class
|
1397 |
"""
|
1398 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`
|
1399 |
|
1400 |
Args:
|
1401 |
-
config:
|
1402 |
"""
|
1403 |
|
1404 |
-
def __init__(self, config:
|
1405 |
super().__init__(config)
|
1406 |
self.padding_idx = config.pad_token_id
|
1407 |
self.vocab_size = config.vocab_size
|
1408 |
|
1409 |
-
self.embed_tokens = nn.Embedding(
|
1410 |
-
config.vocab_size, config.hidden_size, self.padding_idx
|
1411 |
-
)
|
1412 |
self.layers = nn.ModuleList(
|
1413 |
-
[
|
1414 |
-
DeepseekV2DecoderLayer(config, layer_idx)
|
1415 |
-
for layer_idx in range(config.num_hidden_layers)
|
1416 |
-
]
|
1417 |
)
|
|
|
1418 |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1419 |
-
self.norm =
|
1420 |
|
1421 |
self.gradient_checkpointing = False
|
1422 |
# Initialize weights and apply final processing
|
@@ -1428,7 +1117,7 @@ class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
1428 |
def set_input_embeddings(self, value):
|
1429 |
self.embed_tokens = value
|
1430 |
|
1431 |
-
@add_start_docstrings_to_model_forward(
|
1432 |
def forward(
|
1433 |
self,
|
1434 |
input_ids: torch.LongTensor = None,
|
@@ -1441,27 +1130,17 @@ class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
1441 |
output_hidden_states: Optional[bool] = None,
|
1442 |
return_dict: Optional[bool] = None,
|
1443 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1444 |
-
output_attentions =
|
1445 |
-
output_attentions
|
1446 |
-
if output_attentions is not None
|
1447 |
-
else self.config.output_attentions
|
1448 |
-
)
|
1449 |
output_hidden_states = (
|
1450 |
-
output_hidden_states
|
1451 |
-
if output_hidden_states is not None
|
1452 |
-
else self.config.output_hidden_states
|
1453 |
)
|
1454 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1455 |
|
1456 |
-
return_dict =
|
1457 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1458 |
-
)
|
1459 |
|
1460 |
# retrieve input_ids and inputs_embeds
|
1461 |
if input_ids is not None and inputs_embeds is not None:
|
1462 |
-
raise ValueError(
|
1463 |
-
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1464 |
-
)
|
1465 |
elif input_ids is not None:
|
1466 |
batch_size, seq_length = input_ids.shape[:2]
|
1467 |
elif inputs_embeds is not None:
|
@@ -1486,10 +1165,7 @@ class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
1486 |
if position_ids is None:
|
1487 |
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1488 |
position_ids = torch.arange(
|
1489 |
-
past_key_values_length,
|
1490 |
-
seq_length + past_key_values_length,
|
1491 |
-
dtype=torch.long,
|
1492 |
-
device=device,
|
1493 |
)
|
1494 |
position_ids = position_ids.unsqueeze(0)
|
1495 |
|
@@ -1498,19 +1174,21 @@ class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
1498 |
|
1499 |
if self._use_flash_attention_2:
|
1500 |
# 2d mask is passed through the layers
|
1501 |
-
attention_mask = (
|
1502 |
-
|
1503 |
-
|
1504 |
-
|
1505 |
-
|
1506 |
-
else:
|
1507 |
-
# 4d mask is passed through the layers
|
1508 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
1509 |
attention_mask,
|
1510 |
(batch_size, seq_length),
|
1511 |
inputs_embeds,
|
1512 |
past_key_values_length,
|
1513 |
)
|
|
|
|
|
|
|
|
|
|
|
1514 |
|
1515 |
# embed positions
|
1516 |
hidden_states = inputs_embeds
|
@@ -1560,17 +1238,9 @@ class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
1560 |
|
1561 |
next_cache = None
|
1562 |
if use_cache:
|
1563 |
-
next_cache = (
|
1564 |
-
next_decoder_cache.to_legacy_cache()
|
1565 |
-
if use_legacy_cache
|
1566 |
-
else next_decoder_cache
|
1567 |
-
)
|
1568 |
if not return_dict:
|
1569 |
-
return tuple(
|
1570 |
-
v
|
1571 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1572 |
-
if v is not None
|
1573 |
-
)
|
1574 |
return BaseModelOutputWithPast(
|
1575 |
last_hidden_state=hidden_states,
|
1576 |
past_key_values=next_cache,
|
@@ -1579,12 +1249,12 @@ class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
1579 |
)
|
1580 |
|
1581 |
|
1582 |
-
class
|
1583 |
_tied_weights_keys = ["lm_head.weight"]
|
1584 |
|
1585 |
def __init__(self, config):
|
1586 |
super().__init__(config)
|
1587 |
-
self.model =
|
1588 |
self.vocab_size = config.vocab_size
|
1589 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1590 |
|
@@ -1609,10 +1279,8 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1609 |
def get_decoder(self):
|
1610 |
return self.model
|
1611 |
|
1612 |
-
@add_start_docstrings_to_model_forward(
|
1613 |
-
@replace_return_docstrings(
|
1614 |
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1615 |
-
)
|
1616 |
def forward(
|
1617 |
self,
|
1618 |
input_ids: torch.LongTensor = None,
|
@@ -1638,9 +1306,9 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1638 |
Example:
|
1639 |
|
1640 |
```python
|
1641 |
-
>>> from transformers import AutoTokenizer,
|
1642 |
|
1643 |
-
>>> model =
|
1644 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1645 |
|
1646 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
@@ -1651,19 +1319,11 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1651 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1652 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1653 |
```"""
|
1654 |
-
output_attentions =
|
1655 |
-
output_attentions
|
1656 |
-
if output_attentions is not None
|
1657 |
-
else self.config.output_attentions
|
1658 |
-
)
|
1659 |
output_hidden_states = (
|
1660 |
-
output_hidden_states
|
1661 |
-
if output_hidden_states is not None
|
1662 |
-
else self.config.output_hidden_states
|
1663 |
-
)
|
1664 |
-
return_dict = (
|
1665 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1666 |
)
|
|
|
1667 |
|
1668 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1669 |
outputs = self.model(
|
@@ -1679,7 +1339,12 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1679 |
)
|
1680 |
|
1681 |
hidden_states = outputs[0]
|
1682 |
-
|
|
|
|
|
|
|
|
|
|
|
1683 |
logits = logits.float()
|
1684 |
|
1685 |
loss = None
|
@@ -1708,12 +1373,7 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1708 |
)
|
1709 |
|
1710 |
def prepare_inputs_for_generation(
|
1711 |
-
self,
|
1712 |
-
input_ids,
|
1713 |
-
past_key_values=None,
|
1714 |
-
attention_mask=None,
|
1715 |
-
inputs_embeds=None,
|
1716 |
-
**kwargs,
|
1717 |
):
|
1718 |
if past_key_values is not None:
|
1719 |
if isinstance(past_key_values, Cache):
|
@@ -1728,10 +1388,7 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1728 |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1729 |
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1730 |
# input)
|
1731 |
-
if
|
1732 |
-
attention_mask is not None
|
1733 |
-
and attention_mask.shape[1] > input_ids.shape[1]
|
1734 |
-
):
|
1735 |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1736 |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1737 |
# input_ids based on the past_length.
|
@@ -1776,19 +1433,16 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1776 |
reordered_past = ()
|
1777 |
for layer_past in past_key_values:
|
1778 |
reordered_past += (
|
1779 |
-
tuple(
|
1780 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
1781 |
-
for past_state in layer_past
|
1782 |
-
),
|
1783 |
)
|
1784 |
return reordered_past
|
1785 |
|
1786 |
|
1787 |
@add_start_docstrings(
|
1788 |
"""
|
1789 |
-
The
|
1790 |
|
1791 |
-
[`
|
1792 |
(e.g. GPT-2) do.
|
1793 |
|
1794 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
@@ -1797,13 +1451,13 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
1797 |
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1798 |
each row of the batch).
|
1799 |
""",
|
1800 |
-
|
1801 |
)
|
1802 |
-
class
|
1803 |
def __init__(self, config):
|
1804 |
super().__init__(config)
|
1805 |
self.num_labels = config.num_labels
|
1806 |
-
self.model =
|
1807 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1808 |
|
1809 |
# Initialize weights and apply final processing
|
@@ -1815,7 +1469,7 @@ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
1815 |
def set_input_embeddings(self, value):
|
1816 |
self.model.embed_tokens = value
|
1817 |
|
1818 |
-
@add_start_docstrings_to_model_forward(
|
1819 |
def forward(
|
1820 |
self,
|
1821 |
input_ids: torch.LongTensor = None,
|
@@ -1835,9 +1489,7 @@ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
1835 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1836 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1837 |
"""
|
1838 |
-
return_dict =
|
1839 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1840 |
-
)
|
1841 |
|
1842 |
transformer_outputs = self.model(
|
1843 |
input_ids,
|
@@ -1859,22 +1511,18 @@ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
1859 |
batch_size = inputs_embeds.shape[0]
|
1860 |
|
1861 |
if self.config.pad_token_id is None and batch_size != 1:
|
1862 |
-
raise ValueError(
|
1863 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1864 |
-
)
|
1865 |
if self.config.pad_token_id is None:
|
1866 |
sequence_lengths = -1
|
1867 |
else:
|
1868 |
if input_ids is not None:
|
1869 |
-
sequence_lengths = (
|
1870 |
-
|
1871 |
-
)
|
1872 |
else:
|
1873 |
sequence_lengths = -1
|
1874 |
|
1875 |
-
pooled_logits = logits[
|
1876 |
-
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1877 |
-
]
|
1878 |
|
1879 |
loss = None
|
1880 |
if labels is not None:
|
@@ -1882,9 +1530,7 @@ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
1882 |
if self.config.problem_type is None:
|
1883 |
if self.num_labels == 1:
|
1884 |
self.config.problem_type = "regression"
|
1885 |
-
elif self.num_labels > 1 and (
|
1886 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
1887 |
-
):
|
1888 |
self.config.problem_type = "single_label_classification"
|
1889 |
else:
|
1890 |
self.config.problem_type = "multi_label_classification"
|
@@ -1897,9 +1543,7 @@ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
1897 |
loss = loss_fct(pooled_logits, labels)
|
1898 |
elif self.config.problem_type == "single_label_classification":
|
1899 |
loss_fct = CrossEntropyLoss()
|
1900 |
-
loss = loss_fct(
|
1901 |
-
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1902 |
-
)
|
1903 |
elif self.config.problem_type == "multi_label_classification":
|
1904 |
loss_fct = BCEWithLogitsLoss()
|
1905 |
loss = loss_fct(pooled_logits, labels)
|
@@ -1913,4 +1557,4 @@ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
1913 |
past_key_values=transformer_outputs.past_key_values,
|
1914 |
hidden_states=transformer_outputs.hidden_states,
|
1915 |
attentions=transformer_outputs.attentions,
|
1916 |
-
)
|
|
|
5 |
# and OPT implementations in this library. It has been modified from its
|
6 |
# original forms to accommodate minor architectural differences compared
|
7 |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
11 |
# You may obtain a copy of the License at
|
|
|
34 |
AttentionMaskConverter,
|
35 |
_prepare_4d_attention_mask,
|
36 |
_prepare_4d_causal_attention_mask,
|
37 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
38 |
)
|
39 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
|
|
|
|
|
|
|
|
40 |
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
|
|
|
|
|
|
42 |
from transformers.utils import (
|
43 |
add_start_docstrings,
|
44 |
add_start_docstrings_to_model_forward,
|
|
|
48 |
replace_return_docstrings,
|
49 |
)
|
50 |
from transformers.utils.import_utils import is_torch_fx_available
|
51 |
+
from .configuration_deepseek import DeepseekConfig
|
52 |
+
|
|
|
53 |
|
54 |
if is_flash_attn_2_available():
|
55 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
|
67 |
|
68 |
logger = logging.get_logger(__name__)
|
69 |
|
70 |
+
_CONFIG_FOR_DOC = "DeepseekConfig"
|
71 |
|
72 |
|
73 |
def _get_unpad_data(attention_mask):
|
74 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
75 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
76 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
77 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
|
|
|
|
78 |
return (
|
79 |
indices,
|
80 |
cu_seqlens,
|
|
|
82 |
)
|
83 |
|
84 |
|
85 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
86 |
+
warnings.warn(
|
87 |
+
"Calling `transformers.models.Deepseek.modeling_Deepseek._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
|
88 |
+
)
|
89 |
+
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
90 |
+
|
91 |
+
|
92 |
+
def _make_causal_mask(
|
93 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
94 |
+
):
|
95 |
+
warnings.warn(
|
96 |
+
"Calling `transformers.models.Deepseek.modeling_Deepseek._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.Deepseek.modeling_Deepseek.AttentionMaskConverter._make_causal_mask"
|
97 |
+
)
|
98 |
+
return AttentionMaskConverter._make_causal_mask(
|
99 |
+
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
class DeepseekRMSNorm(nn.Module):
|
104 |
def __init__(self, hidden_size, eps=1e-6):
|
105 |
"""
|
106 |
+
DeepseekRMSNorm is equivalent to T5LayerNorm
|
107 |
"""
|
108 |
super().__init__()
|
109 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
117 |
return self.weight * hidden_states.to(input_dtype)
|
118 |
|
119 |
|
120 |
+
ALL_LAYERNORM_LAYERS.append(DeepseekRMSNorm)
|
121 |
|
122 |
|
123 |
+
class DeepseekRotaryEmbedding(nn.Module):
|
124 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
125 |
super().__init__()
|
126 |
|
127 |
self.dim = dim
|
128 |
self.max_position_embeddings = max_position_embeddings
|
129 |
self.base = base
|
130 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
|
|
|
|
131 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
132 |
|
133 |
# Build here to make `torch.jit.trace` work.
|
134 |
self._set_cos_sin_cache(
|
135 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
|
|
|
|
136 |
)
|
137 |
self.max_seq_len_cached = None
|
138 |
|
139 |
+
|
140 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
141 |
self.max_seq_len_cached = seq_len
|
142 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
|
|
|
143 |
|
144 |
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
145 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
|
158 |
)
|
159 |
|
160 |
|
161 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Deepseek
|
162 |
+
class DeepseekLinearScalingRotaryEmbedding(DeepseekRotaryEmbedding):
|
163 |
+
"""DeepseekRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
164 |
|
165 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
self.scaling_factor = scaling_factor
|
167 |
super().__init__(dim, max_position_embeddings, base, device)
|
168 |
|
169 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
170 |
self.max_seq_len_cached = seq_len
|
171 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
|
|
|
172 |
t = t / self.scaling_factor
|
173 |
|
174 |
freqs = torch.outer(t, self.inv_freq)
|
|
|
178 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
179 |
|
180 |
|
181 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Deepseek
|
182 |
+
class DeepseekDynamicNTKScalingRotaryEmbedding(DeepseekRotaryEmbedding):
|
183 |
+
"""DeepseekRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
184 |
|
185 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
self.scaling_factor = scaling_factor
|
187 |
super().__init__(dim, max_position_embeddings, base, device)
|
188 |
|
|
|
191 |
|
192 |
if seq_len > self.max_position_embeddings:
|
193 |
base = self.base * (
|
194 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
|
|
195 |
) ** (self.dim / (self.dim - 2))
|
196 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
|
|
|
|
197 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
198 |
|
199 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
|
|
|
200 |
|
201 |
freqs = torch.outer(t, self.inv_freq)
|
202 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
|
205 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
206 |
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
209 |
def rotate_half(x):
|
210 |
"""Rotates half the hidden dims of the input."""
|
|
|
237 |
"""
|
238 |
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
239 |
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
241 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
242 |
return q_embed, k_embed
|
243 |
|
244 |
|
245 |
+
class DeepseekMLP(nn.Module):
|
246 |
+
def __init__(self, config, hidden_size = None, intermediate_size = None):
|
247 |
super().__init__()
|
248 |
self.config = config
|
249 |
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
250 |
+
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
|
|
|
|
|
251 |
|
252 |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
253 |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
|
255 |
self.act_fn = ACT2FN[config.hidden_act]
|
256 |
|
257 |
def forward(self, x):
|
258 |
+
if self.config.pretraining_tp > 1:
|
259 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
260 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
261 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
262 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
263 |
+
|
264 |
+
gate_proj = torch.cat(
|
265 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
266 |
+
)
|
267 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
268 |
+
|
269 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
270 |
+
down_proj = [
|
271 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
272 |
+
]
|
273 |
+
down_proj = sum(down_proj)
|
274 |
+
else:
|
275 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
276 |
+
|
277 |
return down_proj
|
278 |
|
279 |
|
|
|
283 |
self.config = config
|
284 |
self.top_k = config.num_experts_per_tok
|
285 |
self.n_routed_experts = config.n_routed_experts
|
286 |
+
|
287 |
self.scoring_func = config.scoring_func
|
288 |
self.alpha = config.aux_loss_alpha
|
289 |
self.seq_aux = config.seq_aux
|
|
|
|
|
|
|
290 |
|
291 |
# topk selection algorithm
|
292 |
self.norm_topk_prob = config.norm_topk_prob
|
293 |
self.gating_dim = config.hidden_size
|
294 |
+
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
|
|
|
|
295 |
self.reset_parameters()
|
296 |
|
297 |
def reset_parameters(self) -> None:
|
298 |
+
import torch.nn.init as init
|
|
|
299 |
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
300 |
+
|
301 |
def forward(self, hidden_states):
|
302 |
+
bsz, seq_len, h = hidden_states.shape
|
303 |
### compute gating score
|
304 |
hidden_states = hidden_states.view(-1, h)
|
305 |
+
logits = F.linear(hidden_states, self.weight, None)
|
306 |
+
if self.scoring_func == 'softmax':
|
307 |
+
scores = logits.softmax(dim=-1)
|
|
|
|
|
308 |
else:
|
309 |
+
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
310 |
+
|
|
|
|
|
311 |
### select top-k experts
|
312 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
313 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
### norm gate to sum 1
|
315 |
if self.top_k > 1 and self.norm_topk_prob:
|
316 |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
317 |
topk_weight = topk_weight / denominator
|
318 |
+
|
|
|
319 |
### expert-level computation auxiliary loss
|
320 |
if self.training and self.alpha > 0.0:
|
321 |
scores_for_aux = scores
|
|
|
324 |
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
325 |
if self.seq_aux:
|
326 |
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
327 |
+
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
328 |
+
ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(seq_len * aux_topk / self.n_routed_experts)
|
329 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean() * self.alpha
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
else:
|
331 |
+
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
|
|
|
|
332 |
ce = mask_ce.float().mean(0)
|
333 |
Pi = scores_for_aux.mean(0)
|
334 |
fi = ce * self.n_routed_experts
|
|
|
340 |
|
341 |
class AddAuxiliaryLoss(torch.autograd.Function):
|
342 |
"""
|
343 |
+
The trick function of adding auxiliary (aux) loss,
|
344 |
which includes the gradient of the aux loss during backpropagation.
|
345 |
"""
|
|
|
346 |
@staticmethod
|
347 |
def forward(ctx, x, loss):
|
348 |
assert loss.numel() == 1
|
|
|
356 |
if ctx.required_aux_loss:
|
357 |
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
358 |
return grad_output, grad_loss
|
359 |
+
|
360 |
+
|
361 |
+
class DeepseekMoE(nn.Module):
|
362 |
"""
|
363 |
A mixed expert module containing shared experts.
|
364 |
"""
|
|
|
365 |
def __init__(self, config):
|
366 |
super().__init__()
|
367 |
self.config = config
|
368 |
self.num_experts_per_tok = config.num_experts_per_tok
|
369 |
+
self.experts = nn.ModuleList([DeepseekMLP(config, intermediate_size = config.moe_intermediate_size) for i in range(config.n_routed_experts)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
self.gate = MoEGate(config)
|
371 |
if config.n_shared_experts is not None:
|
372 |
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
373 |
+
self.shared_experts = DeepseekMLP(config=config, intermediate_size = intermediate_size)
|
374 |
+
|
|
|
|
|
375 |
def forward(self, hidden_states):
|
376 |
identity = hidden_states
|
377 |
orig_shape = hidden_states.shape
|
|
|
379 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
380 |
flat_topk_idx = topk_idx.view(-1)
|
381 |
if self.training:
|
382 |
+
hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
|
|
|
|
|
383 |
y = torch.empty_like(hidden_states)
|
384 |
for i, expert in enumerate(self.experts):
|
385 |
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
386 |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
387 |
+
y = y.view(*orig_shape)
|
388 |
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
389 |
else:
|
390 |
+
y = self.moe_infer(hidden_states, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
391 |
if self.config.n_shared_experts is not None:
|
392 |
y = y + self.shared_experts(identity)
|
393 |
return y
|
394 |
+
|
395 |
@torch.no_grad()
|
396 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
397 |
+
expert_cache = torch.zeros_like(x)
|
398 |
+
idxs = flat_expert_indices.argsort()
|
399 |
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
400 |
+
token_idxs = idxs // self.num_experts_per_tok
|
401 |
+
for i, end_idx in enumerate(tokens_per_expert):
|
402 |
+
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
|
403 |
+
if start_idx == end_idx:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
continue
|
405 |
+
expert = self.experts[i]
|
406 |
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
407 |
+
expert_tokens = x[exp_token_idx]
|
408 |
+
expert_out = expert(expert_tokens)
|
409 |
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
410 |
+
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
|
411 |
+
return expert_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
|
414 |
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
|
|
420 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
421 |
if n_rep == 1:
|
422 |
return hidden_states
|
423 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
|
|
|
424 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
425 |
|
426 |
|
427 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Deepseek
|
428 |
+
class DeepseekAttention(nn.Module):
|
429 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
430 |
|
431 |
+
def __init__(self, config: DeepseekConfig, layer_idx: Optional[int] = None):
|
432 |
super().__init__()
|
433 |
self.config = config
|
434 |
self.layer_idx = layer_idx
|
|
|
442 |
self.attention_dropout = config.attention_dropout
|
443 |
self.hidden_size = config.hidden_size
|
444 |
self.num_heads = config.num_attention_heads
|
445 |
+
self.head_dim = self.hidden_size // self.num_heads
|
446 |
+
self.num_key_value_heads = config.num_key_value_heads
|
447 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
448 |
self.max_position_embeddings = config.max_position_embeddings
|
449 |
self.rope_theta = config.rope_theta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
self.is_causal = True
|
451 |
|
452 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
453 |
+
raise ValueError(
|
454 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
455 |
+
f" and `num_heads`: {self.num_heads})."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
)
|
457 |
|
458 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
459 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
460 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
461 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
self._init_rope()
|
463 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
def _init_rope(self):
|
465 |
if self.config.rope_scaling is None:
|
466 |
+
self.rotary_emb = DeepseekRotaryEmbedding(
|
467 |
+
self.head_dim,
|
468 |
max_position_embeddings=self.max_position_embeddings,
|
469 |
base=self.rope_theta,
|
470 |
)
|
|
|
472 |
scaling_type = self.config.rope_scaling["type"]
|
473 |
scaling_factor = self.config.rope_scaling["factor"]
|
474 |
if scaling_type == "linear":
|
475 |
+
self.rotary_emb = DeepseekLinearScalingRotaryEmbedding(
|
476 |
+
self.head_dim,
|
477 |
max_position_embeddings=self.max_position_embeddings,
|
478 |
scaling_factor=scaling_factor,
|
479 |
base=self.rope_theta,
|
480 |
)
|
481 |
elif scaling_type == "dynamic":
|
482 |
+
self.rotary_emb = DeepseekDynamicNTKScalingRotaryEmbedding(
|
483 |
+
self.head_dim,
|
484 |
max_position_embeddings=self.max_position_embeddings,
|
485 |
scaling_factor=scaling_factor,
|
486 |
base=self.rope_theta,
|
487 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
else:
|
489 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
490 |
|
491 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
492 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
|
|
|
|
|
|
493 |
|
494 |
def forward(
|
495 |
self,
|
|
|
505 |
warnings.warn(
|
506 |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
507 |
)
|
508 |
+
|
509 |
bsz, q_len, _ = hidden_states.size()
|
510 |
|
511 |
+
if self.config.pretraining_tp > 1:
|
512 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
513 |
+
query_slices = self.q_proj.weight.split(
|
514 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
515 |
+
)
|
516 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
517 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
518 |
+
|
519 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
520 |
+
query_states = torch.cat(query_states, dim=-1)
|
521 |
+
|
522 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
523 |
+
key_states = torch.cat(key_states, dim=-1)
|
524 |
+
|
525 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
526 |
+
value_states = torch.cat(value_states, dim=-1)
|
527 |
+
|
528 |
else:
|
529 |
+
query_states = self.q_proj(hidden_states)
|
530 |
+
key_states = self.k_proj(hidden_states)
|
531 |
+
value_states = self.v_proj(hidden_states)
|
|
|
|
|
532 |
|
533 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
534 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
535 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
+
kv_seq_len = key_states.shape[-2]
|
|
|
|
|
|
|
538 |
if past_key_value is not None:
|
539 |
if self.layer_idx is None:
|
540 |
raise ValueError(
|
|
|
544 |
)
|
545 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
546 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
547 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
if past_key_value is not None:
|
550 |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
551 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
552 |
|
553 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
554 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
555 |
+
|
556 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
557 |
|
558 |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
559 |
raise ValueError(
|
560 |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
561 |
f" {attn_weights.size()}"
|
562 |
)
|
563 |
+
|
564 |
if attention_mask is not None:
|
565 |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
566 |
raise ValueError(
|
|
|
569 |
attn_weights = attn_weights + attention_mask
|
570 |
|
571 |
# upcast attention to fp32
|
572 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
573 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
|
|
|
|
|
|
|
574 |
attn_output = torch.matmul(attn_weights, value_states)
|
575 |
|
576 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
577 |
raise ValueError(
|
578 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
579 |
f" {attn_output.size()}"
|
580 |
)
|
581 |
|
582 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
583 |
|
584 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
585 |
|
586 |
+
if self.config.pretraining_tp > 1:
|
587 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
588 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
589 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
590 |
+
else:
|
591 |
+
attn_output = self.o_proj(attn_output)
|
592 |
|
593 |
if not output_attentions:
|
594 |
attn_weights = None
|
|
|
596 |
return attn_output, attn_weights, past_key_value
|
597 |
|
598 |
|
599 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Deepseek
|
600 |
+
class DeepseekFlashAttention2(DeepseekAttention):
|
601 |
"""
|
602 |
+
Deepseek flash attention module. This module inherits from `DeepseekAttention` as the weights of the module stays
|
603 |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
604 |
flash attention and deal with padding tokens in case the input contains any of them.
|
605 |
"""
|
|
|
622 |
use_cache: bool = False,
|
623 |
**kwargs,
|
624 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
625 |
+
# DeepseekFlashAttention2 attention does not support output_attentions
|
626 |
if "padding_mask" in kwargs:
|
627 |
warnings.warn(
|
628 |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
|
635 |
|
636 |
bsz, q_len, _ = hidden_states.size()
|
637 |
|
638 |
+
query_states = self.q_proj(hidden_states)
|
639 |
+
key_states = self.k_proj(hidden_states)
|
640 |
+
value_states = self.v_proj(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
641 |
|
642 |
# Flash attention requires the input to have the shape
|
643 |
# batch_size x seq_length x head_dim x hidden_dim
|
644 |
# therefore we just need to keep the original shape
|
645 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
646 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
647 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
648 |
|
649 |
+
kv_seq_len = key_states.shape[-2]
|
650 |
if past_key_value is not None:
|
651 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
652 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
653 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
|
655 |
if past_key_value is not None:
|
656 |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
657 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
658 |
|
659 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
660 |
# to be able to avoid many of these transpose/reshape/view.
|
|
|
668 |
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
669 |
# cast them back in the correct dtype just to be sure everything works as expected.
|
670 |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
671 |
+
# in fp32. (DeepseekRMSNorm handles it correctly)
|
672 |
|
673 |
input_dtype = query_states.dtype
|
674 |
if input_dtype == torch.float32:
|
|
|
678 |
elif torch.is_autocast_enabled():
|
679 |
target_dtype = torch.get_autocast_gpu_dtype()
|
680 |
else:
|
681 |
+
target_dtype = self.q_proj.weight.dtype
|
682 |
|
683 |
logger.warning_once(
|
684 |
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
|
691 |
value_states = value_states.to(target_dtype)
|
692 |
|
693 |
attn_output = self._flash_attention_forward(
|
694 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
)
|
|
|
|
|
696 |
|
697 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
|
|
|
|
698 |
attn_output = self.o_proj(attn_output)
|
699 |
|
700 |
if not output_attentions:
|
|
|
703 |
return attn_output, attn_weights, past_key_value
|
704 |
|
705 |
def _flash_attention_forward(
|
706 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
):
|
708 |
"""
|
709 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
|
727 |
if not self._flash_attn_uses_top_left_mask:
|
728 |
causal = self.is_causal
|
729 |
else:
|
730 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekFlashAttention2 __init__.
|
731 |
causal = self.is_causal and query_length != 1
|
732 |
|
733 |
# Contains at least one padding token in the sequence
|
734 |
if attention_mask is not None:
|
735 |
batch_size = query_states.shape[0]
|
736 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
737 |
query_states, key_states, value_states, attention_mask, query_length
|
738 |
)
|
739 |
|
|
|
753 |
causal=causal,
|
754 |
)
|
755 |
|
756 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
|
|
|
757 |
else:
|
758 |
attn_output = flash_attn_func(
|
759 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
|
|
|
|
|
|
|
|
|
|
760 |
)
|
761 |
|
762 |
return attn_output
|
763 |
|
764 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
|
|
|
765 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
766 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
767 |
|
768 |
key_layer = index_first_axis(
|
769 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
|
770 |
)
|
771 |
value_layer = index_first_axis(
|
772 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
|
773 |
)
|
774 |
if query_length == kv_seq_len:
|
775 |
query_layer = index_first_axis(
|
776 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
|
|
777 |
)
|
778 |
cu_seqlens_q = cu_seqlens_k
|
779 |
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
|
788 |
else:
|
789 |
# The -q_len: slice assumes left padding.
|
790 |
attention_mask = attention_mask[:, -query_length:]
|
791 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
|
792 |
|
793 |
return (
|
794 |
query_layer,
|
|
|
800 |
)
|
801 |
|
802 |
|
803 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Deepseek
|
804 |
+
class DeepseekSdpaAttention(DeepseekAttention):
|
805 |
+
"""
|
806 |
+
Deepseek attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
807 |
+
`DeepseekAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
808 |
+
SDPA API.
|
809 |
+
"""
|
810 |
+
|
811 |
+
# Adapted from DeepseekAttention.forward
|
812 |
+
def forward(
|
813 |
+
self,
|
814 |
+
hidden_states: torch.Tensor,
|
815 |
+
attention_mask: Optional[torch.Tensor] = None,
|
816 |
+
position_ids: Optional[torch.LongTensor] = None,
|
817 |
+
past_key_value: Optional[Cache] = None,
|
818 |
+
output_attentions: bool = False,
|
819 |
+
use_cache: bool = False,
|
820 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
821 |
+
if output_attentions:
|
822 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
823 |
+
logger.warning_once(
|
824 |
+
"DeepseekModel is using DeepseekSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
825 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
826 |
+
)
|
827 |
+
return super().forward(
|
828 |
+
hidden_states=hidden_states,
|
829 |
+
attention_mask=attention_mask,
|
830 |
+
position_ids=position_ids,
|
831 |
+
past_key_value=past_key_value,
|
832 |
+
output_attentions=output_attentions,
|
833 |
+
use_cache=use_cache,
|
834 |
+
)
|
835 |
+
|
836 |
+
bsz, q_len, _ = hidden_states.size()
|
837 |
+
|
838 |
+
query_states = self.q_proj(hidden_states)
|
839 |
+
key_states = self.k_proj(hidden_states)
|
840 |
+
value_states = self.v_proj(hidden_states)
|
841 |
+
|
842 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
843 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
844 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
845 |
+
|
846 |
+
kv_seq_len = key_states.shape[-2]
|
847 |
+
if past_key_value is not None:
|
848 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
849 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
850 |
+
|
851 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
852 |
+
|
853 |
+
if past_key_value is not None:
|
854 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
855 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
856 |
+
|
857 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
858 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
859 |
+
|
860 |
+
if attention_mask is not None:
|
861 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
862 |
+
raise ValueError(
|
863 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
864 |
+
)
|
865 |
+
|
866 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
867 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
868 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
869 |
+
query_states = query_states.contiguous()
|
870 |
+
key_states = key_states.contiguous()
|
871 |
+
value_states = value_states.contiguous()
|
872 |
+
|
873 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
874 |
+
query_states,
|
875 |
+
key_states,
|
876 |
+
value_states,
|
877 |
+
attn_mask=attention_mask,
|
878 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
879 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
880 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
881 |
+
)
|
882 |
+
|
883 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
884 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
885 |
+
|
886 |
+
attn_output = self.o_proj(attn_output)
|
887 |
+
|
888 |
+
return attn_output, None, past_key_value
|
889 |
+
|
890 |
+
|
891 |
+
Deepseek_ATTENTION_CLASSES = {
|
892 |
+
"eager": DeepseekAttention,
|
893 |
+
"flash_attention_2": DeepseekFlashAttention2,
|
894 |
+
"sdpa": DeepseekSdpaAttention,
|
895 |
}
|
896 |
|
897 |
|
898 |
+
class DeepseekDecoderLayer(nn.Module):
|
899 |
+
def __init__(self, config: DeepseekConfig, layer_idx: int):
|
900 |
super().__init__()
|
901 |
self.hidden_size = config.hidden_size
|
902 |
|
903 |
+
self.self_attn = Deepseek_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
|
|
|
|
904 |
|
905 |
+
self.mlp = DeepseekMoE(config) if (config.n_routed_experts is not None and \
|
906 |
+
layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0) \
|
907 |
+
else DeepseekMLP(config)
|
908 |
+
self.input_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
909 |
+
self.post_attention_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
910 |
|
911 |
def forward(
|
912 |
self,
|
|
|
917 |
output_attentions: Optional[bool] = False,
|
918 |
use_cache: Optional[bool] = False,
|
919 |
**kwargs,
|
920 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
921 |
"""
|
922 |
Args:
|
923 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
|
969 |
return outputs
|
970 |
|
971 |
|
972 |
+
Deepseek_START_DOCSTRING = r"""
|
973 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
974 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
975 |
etc.)
|
|
|
979 |
and behavior.
|
980 |
|
981 |
Parameters:
|
982 |
+
config ([`DeepseekConfig`]):
|
983 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
984 |
load the weights associated with the model, only the configuration. Check out the
|
985 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
987 |
|
988 |
|
989 |
@add_start_docstrings(
|
990 |
+
"The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
|
991 |
+
Deepseek_START_DOCSTRING,
|
992 |
)
|
993 |
+
class DeepseekPreTrainedModel(PreTrainedModel):
|
994 |
+
config_class = DeepseekConfig
|
995 |
base_model_prefix = "model"
|
996 |
supports_gradient_checkpointing = True
|
997 |
+
_no_split_modules = ["DeepseekDecoderLayer"]
|
998 |
_skip_keys_device_placement = "past_key_values"
|
999 |
_supports_flash_attn_2 = True
|
1000 |
+
_supports_sdpa = True
|
1001 |
_supports_cache_class = True
|
1002 |
|
1003 |
def _init_weights(self, module):
|
|
|
1012 |
module.weight.data[module.padding_idx].zero_()
|
1013 |
|
1014 |
|
1015 |
+
Deepseek_INPUTS_DOCSTRING = r"""
|
1016 |
Args:
|
1017 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1018 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
|
1083 |
|
1084 |
|
1085 |
@add_start_docstrings(
|
1086 |
+
"The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
|
1087 |
+
Deepseek_START_DOCSTRING,
|
1088 |
)
|
1089 |
+
class DeepseekModel(DeepseekPreTrainedModel):
|
1090 |
"""
|
1091 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekDecoderLayer`]
|
1092 |
|
1093 |
Args:
|
1094 |
+
config: DeepseekConfig
|
1095 |
"""
|
1096 |
|
1097 |
+
def __init__(self, config: DeepseekConfig):
|
1098 |
super().__init__(config)
|
1099 |
self.padding_idx = config.pad_token_id
|
1100 |
self.vocab_size = config.vocab_size
|
1101 |
|
1102 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
|
1103 |
self.layers = nn.ModuleList(
|
1104 |
+
[DeepseekDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
|
|
|
|
|
1105 |
)
|
1106 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1107 |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1108 |
+
self.norm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1109 |
|
1110 |
self.gradient_checkpointing = False
|
1111 |
# Initialize weights and apply final processing
|
|
|
1117 |
def set_input_embeddings(self, value):
|
1118 |
self.embed_tokens = value
|
1119 |
|
1120 |
+
@add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
|
1121 |
def forward(
|
1122 |
self,
|
1123 |
input_ids: torch.LongTensor = None,
|
|
|
1130 |
output_hidden_states: Optional[bool] = None,
|
1131 |
return_dict: Optional[bool] = None,
|
1132 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1133 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
1134 |
output_hidden_states = (
|
1135 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
1136 |
)
|
1137 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1138 |
|
1139 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
1140 |
|
1141 |
# retrieve input_ids and inputs_embeds
|
1142 |
if input_ids is not None and inputs_embeds is not None:
|
1143 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
|
|
1144 |
elif input_ids is not None:
|
1145 |
batch_size, seq_length = input_ids.shape[:2]
|
1146 |
elif inputs_embeds is not None:
|
|
|
1165 |
if position_ids is None:
|
1166 |
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1167 |
position_ids = torch.arange(
|
1168 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
|
|
|
|
|
1169 |
)
|
1170 |
position_ids = position_ids.unsqueeze(0)
|
1171 |
|
|
|
1174 |
|
1175 |
if self._use_flash_attention_2:
|
1176 |
# 2d mask is passed through the layers
|
1177 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1178 |
+
elif self._use_sdpa and not output_attentions:
|
1179 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1180 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1181 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
|
|
|
|
|
1182 |
attention_mask,
|
1183 |
(batch_size, seq_length),
|
1184 |
inputs_embeds,
|
1185 |
past_key_values_length,
|
1186 |
)
|
1187 |
+
else:
|
1188 |
+
# 4d mask is passed through the layers
|
1189 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1190 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1191 |
+
)
|
1192 |
|
1193 |
# embed positions
|
1194 |
hidden_states = inputs_embeds
|
|
|
1238 |
|
1239 |
next_cache = None
|
1240 |
if use_cache:
|
1241 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
|
|
|
|
|
|
|
|
1242 |
if not return_dict:
|
1243 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
|
|
|
|
|
1244 |
return BaseModelOutputWithPast(
|
1245 |
last_hidden_state=hidden_states,
|
1246 |
past_key_values=next_cache,
|
|
|
1249 |
)
|
1250 |
|
1251 |
|
1252 |
+
class DeepseekForCausalLM(DeepseekPreTrainedModel):
|
1253 |
_tied_weights_keys = ["lm_head.weight"]
|
1254 |
|
1255 |
def __init__(self, config):
|
1256 |
super().__init__(config)
|
1257 |
+
self.model = DeepseekModel(config)
|
1258 |
self.vocab_size = config.vocab_size
|
1259 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1260 |
|
|
|
1279 |
def get_decoder(self):
|
1280 |
return self.model
|
1281 |
|
1282 |
+
@add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
|
1283 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
|
|
1284 |
def forward(
|
1285 |
self,
|
1286 |
input_ids: torch.LongTensor = None,
|
|
|
1306 |
Example:
|
1307 |
|
1308 |
```python
|
1309 |
+
>>> from transformers import AutoTokenizer, DeepseekForCausalLM
|
1310 |
|
1311 |
+
>>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1312 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1313 |
|
1314 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
|
1319 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1320 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1321 |
```"""
|
1322 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
1323 |
output_hidden_states = (
|
1324 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
|
|
|
|
1325 |
)
|
1326 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1327 |
|
1328 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1329 |
outputs = self.model(
|
|
|
1339 |
)
|
1340 |
|
1341 |
hidden_states = outputs[0]
|
1342 |
+
if self.config.pretraining_tp > 1:
|
1343 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1344 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1345 |
+
logits = torch.cat(logits, dim=-1)
|
1346 |
+
else:
|
1347 |
+
logits = self.lm_head(hidden_states)
|
1348 |
logits = logits.float()
|
1349 |
|
1350 |
loss = None
|
|
|
1373 |
)
|
1374 |
|
1375 |
def prepare_inputs_for_generation(
|
1376 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
|
|
|
|
|
|
|
|
|
1377 |
):
|
1378 |
if past_key_values is not None:
|
1379 |
if isinstance(past_key_values, Cache):
|
|
|
1388 |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1389 |
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1390 |
# input)
|
1391 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
|
|
|
|
|
1392 |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1393 |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1394 |
# input_ids based on the past_length.
|
|
|
1433 |
reordered_past = ()
|
1434 |
for layer_past in past_key_values:
|
1435 |
reordered_past += (
|
1436 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
|
|
|
|
|
1437 |
)
|
1438 |
return reordered_past
|
1439 |
|
1440 |
|
1441 |
@add_start_docstrings(
|
1442 |
"""
|
1443 |
+
The Deepseek Model transformer with a sequence classification head on top (linear layer).
|
1444 |
|
1445 |
+
[`DeepseekForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1446 |
(e.g. GPT-2) do.
|
1447 |
|
1448 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
|
1451 |
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1452 |
each row of the batch).
|
1453 |
""",
|
1454 |
+
Deepseek_START_DOCSTRING,
|
1455 |
)
|
1456 |
+
class DeepseekForSequenceClassification(DeepseekPreTrainedModel):
|
1457 |
def __init__(self, config):
|
1458 |
super().__init__(config)
|
1459 |
self.num_labels = config.num_labels
|
1460 |
+
self.model = DeepseekModel(config)
|
1461 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1462 |
|
1463 |
# Initialize weights and apply final processing
|
|
|
1469 |
def set_input_embeddings(self, value):
|
1470 |
self.model.embed_tokens = value
|
1471 |
|
1472 |
+
@add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
|
1473 |
def forward(
|
1474 |
self,
|
1475 |
input_ids: torch.LongTensor = None,
|
|
|
1489 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1490 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1491 |
"""
|
1492 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
1493 |
|
1494 |
transformer_outputs = self.model(
|
1495 |
input_ids,
|
|
|
1511 |
batch_size = inputs_embeds.shape[0]
|
1512 |
|
1513 |
if self.config.pad_token_id is None and batch_size != 1:
|
1514 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
|
1515 |
if self.config.pad_token_id is None:
|
1516 |
sequence_lengths = -1
|
1517 |
else:
|
1518 |
if input_ids is not None:
|
1519 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1520 |
+
logits.device
|
1521 |
+
)
|
1522 |
else:
|
1523 |
sequence_lengths = -1
|
1524 |
|
1525 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
1526 |
|
1527 |
loss = None
|
1528 |
if labels is not None:
|
|
|
1530 |
if self.config.problem_type is None:
|
1531 |
if self.num_labels == 1:
|
1532 |
self.config.problem_type = "regression"
|
1533 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
|
1534 |
self.config.problem_type = "single_label_classification"
|
1535 |
else:
|
1536 |
self.config.problem_type = "multi_label_classification"
|
|
|
1543 |
loss = loss_fct(pooled_logits, labels)
|
1544 |
elif self.config.problem_type == "single_label_classification":
|
1545 |
loss_fct = CrossEntropyLoss()
|
1546 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
|
1547 |
elif self.config.problem_type == "multi_label_classification":
|
1548 |
loss_fct = BCEWithLogitsLoss()
|
1549 |
loss = loss_fct(pooled_logits, labels)
|
|
|
1557 |
past_key_values=transformer_outputs.past_key_values,
|
1558 |
hidden_states=transformer_outputs.hidden_states,
|
1559 |
attentions=transformer_outputs.attentions,
|
1560 |
+
)
|