|
--- |
|
language: de |
|
license: mit |
|
datasets: |
|
- wikipedia |
|
- OPUS |
|
- OpenLegalData |
|
- oscar |
|
--- |
|
|
|
# German BERT large |
|
|
|
Released, Oct 2020, this is a German BERT language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model and show that it outperforms its predecessors. |
|
|
|
## Overview |
|
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf) |
|
**Architecture:** BERT large |
|
**Language:** German |
|
|
|
## Performance |
|
``` |
|
GermEval18 Coarse: 80.08 |
|
GermEval18 Fine: 52.48 |
|
GermEval14: 88.16 |
|
``` |
|
|
|
See also: |
|
deepset/gbert-base |
|
deepset/gbert-large |
|
deepset/gelectra-base |
|
deepset/gelectra-large |
|
deepset/gelectra-base-generator |
|
deepset/gelectra-large-generator |
|
|
|
## Authors |
|
**Branden Chan:** branden.chan@deepset.ai |
|
**Stefan Schweter:** stefan@schweter.eu |
|
**Timo Möller:** timo.moeller@deepset.ai |
|
|
|
## About us |
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> |
|
</div> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> |
|
</div> |
|
</div> |
|
|
|
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. |
|
|
|
|
|
Some of our other work: |
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) |
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) |
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) |
|
|
|
## Get in touch and join the Haystack community |
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> |
|
|
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |