|
--- |
|
language: de |
|
datasets: |
|
- deepset/germanquad |
|
license: mit |
|
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg |
|
tags: |
|
- exbert |
|
--- |
|
|
|
# gelectra-base for Extractive QA |
|
|
|
## Overview |
|
**Language model:** gelectra-base-germanquad |
|
**Language:** German |
|
**Training data:** GermanQuAD train set (~ 12MB) |
|
**Eval data:** GermanQuAD test set (~ 5MB) |
|
**Infrastructure**: 1x V100 GPU |
|
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) |
|
**Published**: Apr 21st, 2021 |
|
|
|
## Details |
|
- We trained a German question answering model with a gelectra-base model as its basis. |
|
- The dataset is GermanQuAD, a new, German language dataset, which we hand-annotated and published [online](https://deepset.ai/germanquad). |
|
- The training dataset is one-way annotated and contains 11518 questions and 11518 answers, while the test dataset is three-way annotated so that there are 2204 questions and with 2204·3−76 = 6536answers, because we removed 76 wrong answers. |
|
|
|
See https://deepset.ai/germanquad for more details and dataset download in SQuAD format. |
|
|
|
## Hyperparameters |
|
``` |
|
batch_size = 24 |
|
n_epochs = 2 |
|
max_seq_len = 384 |
|
learning_rate = 3e-5 |
|
lr_schedule = LinearWarmup |
|
embeds_dropout_prob = 0.1 |
|
``` |
|
|
|
## Usage |
|
|
|
### In Haystack |
|
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. |
|
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): |
|
```python |
|
# After running pip install haystack-ai "transformers[torch,sentencepiece]" |
|
|
|
from haystack import Document |
|
from haystack.components.readers import ExtractiveReader |
|
|
|
docs = [ |
|
Document(content="Python is a popular programming language"), |
|
Document(content="python ist eine beliebte Programmiersprache"), |
|
] |
|
|
|
reader = ExtractiveReader(model="deepset/gelectra-base-germanquad") |
|
reader.warm_up() |
|
|
|
question = "What is a popular programming language?" |
|
result = reader.run(query=question, documents=docs) |
|
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} |
|
``` |
|
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). |
|
|
|
### In Transformers |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
model_name = "deepset/gelectra-base-germanquad" |
|
|
|
# a) Get predictions |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Why is model conversion important?', |
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
} |
|
res = nlp(QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
## Performance |
|
We evaluated the extractive question answering performance on our GermanQuAD test set. |
|
Model types and training data are included in the model name. |
|
For finetuning XLM-Roberta, we use the English SQuAD v2.0 dataset. |
|
The GELECTRA models are warm started on the German translation of SQuAD v1.1 and finetuned on [GermanQuAD](https://deepset.ai/germanquad). |
|
The human baseline was computed for the 3-way test set by taking one answer as prediction and the other two as ground truth. |
|
![performancetable](https://images.prismic.io/deepset/1c63afd8-40e6-4fd9-85c4-0dbb81996183_german-qa-vs-xlm-r.png) |
|
|
|
## Authors |
|
**Timo Möller:** timo.moeller@deepset.ai |
|
**Julian Risch:** julian.risch@deepset.ai |
|
**Malte Pietsch:** malte.pietsch@deepset.ai |
|
|
|
## About us |
|
|
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> |
|
</div> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> |
|
</div> |
|
</div> |
|
|
|
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/). |
|
|
|
Some of our other work: |
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2) |
|
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) |
|
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio) |
|
|
|
## Get in touch and join the Haystack community |
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> |
|
|
|
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |
|
|