roberta-base-squad2 / README.md
ZennyKenny's picture
remove square bracket
31d31c9 verified
|
raw
history blame
8.39 kB
metadata
language: en
license: cc-by-4.0
datasets:
  - squad_v2
model-index:
  - name: deepset/roberta-base-squad2
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_v2
          type: squad_v2
          config: squad_v2
          split: validation
        metrics:
          - type: exact_match
            value: 79.9309
            name: Exact Match
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhhNjg5YzNiZGQ1YTIyYTAwZGUwOWEzZTRiYzdjM2QzYjA3ZTUxNDM1NjE1MTUyMjE1MGY1YzEzMjRjYzVjYiIsInZlcnNpb24iOjF9.EH5JJo8EEFwU7osPz3s7qanw_tigeCFhCXjSfyN0Y1nWVnSfulSxIk_DbAEI5iE80V4EKLyp5-mYFodWvL2KDA
          - type: f1
            value: 82.9501
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjk5ZDYwOGQyNjNkMWI0OTE4YzRmOTlkY2JjNjQ0YTZkNTMzMzNkYTA0MDFmNmI3NjA3NjNlMjhiMDQ2ZjJjNSIsInZlcnNpb24iOjF9.DDm0LNTkdLbGsue58bg1aH_s67KfbcmkvL-6ZiI2s8IoxhHJMSf29H_uV2YLyevwx900t-MwTVOW3qfFnMMEAQ
          - type: total
            value: 11869
            name: total
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFkMmI2ODM0NmY5NGNkNmUxYWViOWYxZDNkY2EzYWFmOWI4N2VhYzY5MGEzMTVhOTU4Zjc4YWViOGNjOWJjMCIsInZlcnNpb24iOjF9.fexrU1icJK5_MiifBtZWkeUvpmFISqBLDXSQJ8E6UnrRof-7cU0s4tX_dIsauHWtUpIHMPZCf5dlMWQKXZuAAA
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad
          type: squad
          config: plain_text
          split: validation
        metrics:
          - type: exact_match
            value: 85.289
            name: Exact Match
          - type: f1
            value: 91.841
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: adversarial_qa
          type: adversarial_qa
          config: adversarialQA
          split: validation
        metrics:
          - type: exact_match
            value: 29.5
            name: Exact Match
          - type: f1
            value: 40.367
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_adversarial
          type: squad_adversarial
          config: AddOneSent
          split: validation
        metrics:
          - type: exact_match
            value: 78.567
            name: Exact Match
          - type: f1
            value: 84.469
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts amazon
          type: squadshifts
          config: amazon
          split: test
        metrics:
          - type: exact_match
            value: 69.924
            name: Exact Match
          - type: f1
            value: 83.284
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts new_wiki
          type: squadshifts
          config: new_wiki
          split: test
        metrics:
          - type: exact_match
            value: 81.204
            name: Exact Match
          - type: f1
            value: 90.595
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts nyt
          type: squadshifts
          config: nyt
          split: test
        metrics:
          - type: exact_match
            value: 82.931
            name: Exact Match
          - type: f1
            value: 90.756
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts reddit
          type: squadshifts
          config: reddit
          split: test
        metrics:
          - type: exact_match
            value: 71.55
            name: Exact Match
          - type: f1
            value: 82.939
            name: F1

roberta-base for QA

This is the roberta-base model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.

Overview

Language model: roberta-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example QA pipeline on Haystack
Infrastructure: 4x Tesla v100

Hyperparameters

batch_size = 96
n_epochs = 2
base_LM_model = "roberta-base"
max_seq_len = 386
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64

Using a distilled model instead

Please note that we have also released a distilled version of this model called deepset/tinyroberta-squad2. The distilled model has a comparable prediction quality and runs at twice the speed of the base model.

Usage

In Haystack

Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:

reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# or 
reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")

For a complete example of roberta-base-squad2 being used for Question Answering, check out the Tutorials in Haystack Documentation

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Performance

Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 79.87029394424324,
"f1": 82.91251169582613,

"total": 11873,
"HasAns_exact": 77.93522267206478,
"HasAns_f1": 84.02838248389763,
"HasAns_total": 5928,
"NoAns_exact": 81.79983179142137,
"NoAns_f1": 81.79983179142137,
"NoAns_total": 5945

Authors

Branden Chan: branden.chan@deepset.ai
Timo M枚ller: timo.moeller@deepset.ai
Malte Pietsch: malte.pietsch@deepset.ai
Tanay Soni: tanay.soni@deepset.ai

About us

deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website

By the way: we're hiring!