tinyroberta for Extractive QA
This is the distilled version of the deepset/roberta-base-squad2 model. This model has a comparable prediction quality and runs at twice the speed of the base model.
Overview
Language model: tinyroberta-squad2
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example extractive QA pipeline built with Haystack
Infrastructure: 4x Tesla v100
Hyperparameters
batch_size = 96
n_epochs = 4
base_LM_model = "deepset/tinyroberta-squad2-step1"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
distillation_loss_weight = 0.75
temperature = 1.5
teacher = "deepset/robert-large-squad2"
Distillation
This model was distilled using the TinyBERT approach described in this paper and implemented in haystack. Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in deepset/tinyroberta-6l-768d. Secondly, we have performed task-specific distillation with deepset/roberta-base-squad2 as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with deepset/roberta-large-squad2 as the teacher for prediction layer distillation.
Usage
In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
from haystack import Document
from haystack.components.readers import ExtractiveReader
docs = [
Document(content="Python is a popular programming language"),
Document(content="python ist eine beliebte Programmiersprache"),
]
reader = ExtractiveReader(model="deepset/tinyroberta-squad2")
reader.warm_up()
question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/tinyroberta-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Performance
Evaluated on the SQuAD 2.0 dev set with the official eval script.
"exact": 78.69114798281817,
"f1": 81.9198998536977,
"total": 11873,
"HasAns_exact": 76.19770580296895,
"HasAns_f1": 82.66446878592329,
"HasAns_total": 5928,
"NoAns_exact": 81.17746005046257,
"NoAns_f1": 81.17746005046257,
"NoAns_total": 5945
Authors
Branden Chan: branden.chan@deepset.ai
Timo Möller: timo.moeller@deepset.ai
Malte Pietsch: malte.pietsch@deepset.ai
Tanay Soni: tanay.soni@deepset.ai
Michel Bartels: michel.bartels@deepset.ai
About us
deepset is the company behind the production-ready open-source AI framework Haystack.
Some of our other work:
- Distilled roberta-base-squad2 (aka "tinyroberta-squad2")
- German BERT, GermanQuAD and GermanDPR, German embedding model
- deepset Cloud, deepset Studio
Get in touch and join the Haystack community
For more info on Haystack, visit our GitHub repo and Documentation.
We also have a Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube
By the way: we're hiring!
- Downloads last month
- 12,717
Model tree for deepset/tinyroberta-squad2
Dataset used to train deepset/tinyroberta-squad2
Spaces using deepset/tinyroberta-squad2 35
Evaluation results
- Exact Match on squad_v2validation set verified78.863
- F1 on squad_v2validation set verified82.035
- Exact Match on squadvalidation set self-reported83.860
- F1 on squadvalidation set self-reported90.752
- Exact Match on adversarial_qavalidation set self-reported25.967
- F1 on adversarial_qavalidation set self-reported37.006
- Exact Match on squad_adversarialvalidation set self-reported76.329
- F1 on squad_adversarialvalidation set self-reported83.292
- Exact Match on squadshifts amazontest set self-reported63.915
- F1 on squadshifts amazontest set self-reported78.395