julianrisch
commited on
Commit
•
12b287c
1
Parent(s):
b489e65
Update README.md
Browse files
README.md
CHANGED
@@ -132,7 +132,7 @@ model-index:
|
|
132 |
name: F1
|
133 |
---
|
134 |
|
135 |
-
# tinyroberta
|
136 |
|
137 |
This is the *distilled* version of the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model. This model has a comparable prediction quality and runs at twice the speed of the base model.
|
138 |
|
@@ -142,7 +142,7 @@ This is the *distilled* version of the [deepset/roberta-base-squad2](https://hug
|
|
142 |
**Downstream-task:** Extractive QA
|
143 |
**Training data:** SQuAD 2.0
|
144 |
**Eval data:** SQuAD 2.0
|
145 |
-
**Code:**
|
146 |
**Infrastructure**: 4x Tesla v100
|
147 |
|
148 |
## Hyperparameters
|
@@ -170,13 +170,27 @@ Secondly, we have performed task-specific distillation with [deepset/roberta-bas
|
|
170 |
## Usage
|
171 |
|
172 |
### In Haystack
|
173 |
-
Haystack is an
|
174 |
-
|
175 |
```python
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
```
|
|
|
180 |
|
181 |
### In Transformers
|
182 |
```python
|
@@ -231,20 +245,19 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
|
|
231 |
</div>
|
232 |
</div>
|
233 |
|
234 |
-
[deepset](http://deepset.ai/) is the company behind the open-source
|
235 |
-
|
236 |
|
237 |
Some of our other work:
|
238 |
-
- [roberta-base-squad2](
|
239 |
-
- [German BERT
|
240 |
-
- [
|
241 |
|
242 |
## Get in touch and join the Haystack community
|
243 |
|
244 |
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
245 |
|
246 |
-
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community
|
247 |
|
248 |
-
[Twitter](https://twitter.com/
|
249 |
|
250 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
132 |
name: F1
|
133 |
---
|
134 |
|
135 |
+
# tinyroberta for Extractive QA
|
136 |
|
137 |
This is the *distilled* version of the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model. This model has a comparable prediction quality and runs at twice the speed of the base model.
|
138 |
|
|
|
142 |
**Downstream-task:** Extractive QA
|
143 |
**Training data:** SQuAD 2.0
|
144 |
**Eval data:** SQuAD 2.0
|
145 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
146 |
**Infrastructure**: 4x Tesla v100
|
147 |
|
148 |
## Hyperparameters
|
|
|
170 |
## Usage
|
171 |
|
172 |
### In Haystack
|
173 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
174 |
+
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
|
175 |
```python
|
176 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
177 |
+
|
178 |
+
from haystack import Document
|
179 |
+
from haystack.components.readers import ExtractiveReader
|
180 |
+
|
181 |
+
docs = [
|
182 |
+
Document(content="Python is a popular programming language"),
|
183 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
184 |
+
]
|
185 |
+
|
186 |
+
reader = ExtractiveReader(model="deepset/tinyroberta-squad2")
|
187 |
+
reader.warm_up()
|
188 |
+
|
189 |
+
question = "What is a popular programming language?"
|
190 |
+
result = reader.run(query=question, documents=docs)
|
191 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
192 |
```
|
193 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
194 |
|
195 |
### In Transformers
|
196 |
```python
|
|
|
245 |
</div>
|
246 |
</div>
|
247 |
|
248 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
|
|
249 |
|
250 |
Some of our other work:
|
251 |
+
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
252 |
+
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
|
253 |
+
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
|
254 |
|
255 |
## Get in touch and join the Haystack community
|
256 |
|
257 |
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
258 |
|
259 |
+
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
260 |
|
261 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
|
262 |
|
263 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|