roberta-base / README.md
SpirinEgor's picture
Update README.md
c397329
|
raw
history blame
3.63 kB
---
license: apache-2.0
language:
- ru
- en
library_name: transformers
pipeline_tag: fill-mask
---
# RoBERTa-base
<!-- Provide a quick summary of what the model is/does. -->
Pretrained bidirectional encoder for russian language.
The model was trained using standard MLM objective on large text corpora including open social data.
See `Training Details` section for more information
- **Developed by:** [deepvk](https://vk.com/deepvk)
- **Model type:** RoBERTa
- **Languages:** Mostly russian and small fraction of other languages
- **License:** Apache 2.0
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("deepvk/roberta-base")
model = AutoModel.from_pretrained("deepvk/roberta-base")
text = "Привет, мир!"
inputs = tokenizer(text, return_tensors='pt')
predictions = model(**inputs)
```
## Training Details
### Training Data
500 GB of raw text in total.
A mix of the following data: Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus.
### Training Hyperparameters
| Argument | Value |
|--------------------|----------------------|
| Training regime | fp16 mixed precision |
| Training framework | Fairseq |
| Optimizer | Adam |
| Adam betas | 0.9,0.98 |
| Adam eps | 1e-6 |
| Num training steps | 500k |
The model was trained on a machine with 8xA100 for approximately 22 days.
### Architecture details
| Argument | Value |
|-------------------------|----------------|
|Encoder layers | 12 |
|Encoder attention heads | 12 |
|Encoder embed dim | 768 |
|Encoder ffn embed dim | 3,072 |
|Activation function | GeLU |
|Attention dropout | 0.1 |
|Dropout | 0.1 |
|Max positions | 512 |
|Vocab size | 50266 |
|Tokenizer type | Byte-level BPE |
## Evaluation
We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set.
The best result in each task is marked in bold.
All models have the same size except the distilled version of DeBERTa.
| Модель | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Результат |
|------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
| [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
| | | | | | | | | |
| [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
| [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
| [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
| [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |