bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0274
  • Precision: 0.9550
  • Recall: 0.9638
  • F1: 0.9594
  • Accuracy: 0.9973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 148 0.0305 0.8341 0.8789 0.8559 0.9934
No log 2.0 296 0.0215 0.8834 0.9355 0.9087 0.9953
No log 3.0 444 0.0195 0.9140 0.9435 0.9285 0.9961
0.0655 4.0 592 0.0195 0.9282 0.9498 0.9389 0.9964
0.0655 5.0 740 0.0203 0.9177 0.9539 0.9355 0.9962
0.0655 6.0 888 0.0201 0.9401 0.9552 0.9475 0.9966
0.0056 7.0 1036 0.0200 0.9355 0.9535 0.9444 0.9968
0.0056 8.0 1184 0.0208 0.9393 0.9569 0.9480 0.9967
0.0056 9.0 1332 0.0215 0.9380 0.9549 0.9464 0.9968
0.0056 10.0 1480 0.0232 0.9188 0.9582 0.9381 0.9960
0.0024 11.0 1628 0.0212 0.9334 0.9554 0.9442 0.9967
0.0024 12.0 1776 0.0223 0.9383 0.9598 0.9489 0.9968
0.0024 13.0 1924 0.0225 0.9394 0.9542 0.9468 0.9967
0.0012 14.0 2072 0.0232 0.9415 0.9560 0.9487 0.9968
0.0012 15.0 2220 0.0238 0.9413 0.9580 0.9496 0.9967
0.0012 16.0 2368 0.0239 0.9396 0.9582 0.9488 0.9966
0.001 17.0 2516 0.0230 0.9328 0.9563 0.9444 0.9966
0.001 18.0 2664 0.0243 0.9342 0.9577 0.9458 0.9966
0.001 19.0 2812 0.0246 0.9423 0.9576 0.9499 0.9969
0.001 20.0 2960 0.0240 0.9355 0.9576 0.9464 0.9967
0.0006 21.0 3108 0.0241 0.9477 0.9599 0.9538 0.9970
0.0006 22.0 3256 0.0236 0.9443 0.9569 0.9505 0.9968
0.0006 23.0 3404 0.0244 0.9461 0.9578 0.9519 0.9969
0.0006 24.0 3552 0.0248 0.9417 0.96 0.9508 0.9969
0.0006 25.0 3700 0.0246 0.9336 0.9590 0.9461 0.9966
0.0006 26.0 3848 0.0236 0.9421 0.9589 0.9504 0.9968
0.0006 27.0 3996 0.0244 0.9441 0.9612 0.9526 0.9969
0.0004 28.0 4144 0.0250 0.9462 0.9594 0.9528 0.9969
0.0004 29.0 4292 0.0249 0.9430 0.9622 0.9525 0.9969
0.0004 30.0 4440 0.0252 0.9439 0.9612 0.9525 0.9969
0.0003 31.0 4588 0.0253 0.9480 0.9552 0.9515 0.9968
0.0003 32.0 4736 0.0229 0.9484 0.9619 0.9551 0.9969
0.0003 33.0 4884 0.0235 0.9485 0.9608 0.9546 0.9970
0.0003 34.0 5032 0.0247 0.9438 0.9611 0.9524 0.9969
0.0003 35.0 5180 0.0248 0.9481 0.9598 0.9539 0.9970
0.0003 36.0 5328 0.0245 0.9441 0.9621 0.9530 0.9969
0.0003 37.0 5476 0.0255 0.9417 0.9602 0.9508 0.9967
0.0002 38.0 5624 0.0255 0.9416 0.9595 0.9505 0.9969
0.0002 39.0 5772 0.0246 0.9524 0.9611 0.9567 0.9971
0.0002 40.0 5920 0.0254 0.9435 0.9611 0.9522 0.9969
0.0003 41.0 6068 0.0252 0.9386 0.9608 0.9496 0.9966
0.0003 42.0 6216 0.0257 0.9385 0.9601 0.9492 0.9968
0.0003 43.0 6364 0.0251 0.9491 0.9591 0.9541 0.9970
0.0002 44.0 6512 0.0251 0.9448 0.9610 0.9528 0.9970
0.0002 45.0 6660 0.0252 0.9508 0.9622 0.9565 0.9972
0.0002 46.0 6808 0.0252 0.9486 0.9613 0.9549 0.9971
0.0002 47.0 6956 0.0262 0.9498 0.9618 0.9558 0.9971
0.0001 48.0 7104 0.0263 0.9520 0.9624 0.9572 0.9971
0.0001 49.0 7252 0.0263 0.9521 0.9624 0.9573 0.9971
0.0001 50.0 7400 0.0260 0.9526 0.9618 0.9572 0.9972
0.0001 51.0 7548 0.0248 0.9493 0.9634 0.9563 0.9971
0.0001 52.0 7696 0.0255 0.9502 0.9618 0.9560 0.9971
0.0001 53.0 7844 0.0258 0.9522 0.9617 0.9569 0.9972
0.0001 54.0 7992 0.0258 0.9481 0.9615 0.9548 0.9970
0.0001 55.0 8140 0.0251 0.9520 0.9617 0.9568 0.9972
0.0001 56.0 8288 0.0250 0.9509 0.9608 0.9558 0.9972
0.0001 57.0 8436 0.0260 0.9462 0.9601 0.9531 0.9972
0.0001 58.0 8584 0.0252 0.9563 0.9628 0.9595 0.9973
0.0001 59.0 8732 0.0247 0.9506 0.9624 0.9565 0.9972
0.0001 60.0 8880 0.0251 0.9510 0.9611 0.9560 0.9972
0.0001 61.0 9028 0.0255 0.9495 0.9614 0.9554 0.9972
0.0001 62.0 9176 0.0259 0.9537 0.9613 0.9575 0.9972
0.0001 63.0 9324 0.0259 0.9506 0.9609 0.9557 0.9972
0.0001 64.0 9472 0.0260 0.9544 0.9595 0.9569 0.9972
0.0 65.0 9620 0.0253 0.9511 0.9604 0.9557 0.9972
0.0 66.0 9768 0.0257 0.9526 0.9604 0.9565 0.9972
0.0 67.0 9916 0.0263 0.9528 0.9605 0.9566 0.9972
0.0 68.0 10064 0.0271 0.9544 0.9598 0.9571 0.9972
0.0 69.0 10212 0.0269 0.9530 0.9611 0.9571 0.9972
0.0 70.0 10360 0.0273 0.9514 0.9609 0.9561 0.9972
0.0 71.0 10508 0.0275 0.9535 0.9612 0.9573 0.9972
0.0 72.0 10656 0.0275 0.9524 0.9632 0.9578 0.9972
0.0 73.0 10804 0.0279 0.9537 0.9596 0.9566 0.9972
0.0 74.0 10952 0.0277 0.9475 0.9633 0.9554 0.9970
0.0 75.0 11100 0.0272 0.9537 0.9614 0.9575 0.9972
0.0 76.0 11248 0.0269 0.9541 0.9619 0.9580 0.9972
0.0 77.0 11396 0.0271 0.9552 0.9625 0.9588 0.9972
0.0 78.0 11544 0.0274 0.9457 0.9619 0.9537 0.9970
0.0 79.0 11692 0.0273 0.9524 0.9616 0.9570 0.9972
0.0 80.0 11840 0.0275 0.9530 0.9632 0.9581 0.9972
0.0 81.0 11988 0.0271 0.9496 0.9639 0.9567 0.9971
0.0 82.0 12136 0.0280 0.9537 0.9614 0.9575 0.9972
0.0 83.0 12284 0.0277 0.9499 0.9642 0.9570 0.9970
0.0 84.0 12432 0.0275 0.9517 0.9621 0.9569 0.9971
0.0 85.0 12580 0.0277 0.9524 0.9635 0.9579 0.9972
0.0 86.0 12728 0.0275 0.9517 0.9648 0.9582 0.9972
0.0 87.0 12876 0.0276 0.9519 0.9636 0.9577 0.9972
0.0 88.0 13024 0.0276 0.9541 0.9647 0.9594 0.9972
0.0 89.0 13172 0.0275 0.9500 0.9642 0.9571 0.9971
0.0 90.0 13320 0.0276 0.9532 0.9635 0.9584 0.9972
0.0 91.0 13468 0.0273 0.9542 0.9636 0.9589 0.9972
0.0 92.0 13616 0.0274 0.9541 0.9636 0.9588 0.9973
0.0 93.0 13764 0.0274 0.9552 0.9638 0.9595 0.9973
0.0 94.0 13912 0.0275 0.9547 0.9636 0.9591 0.9973
0.0 95.0 14060 0.0274 0.9557 0.9639 0.9598 0.9973
0.0 96.0 14208 0.0274 0.9548 0.9638 0.9593 0.9973
0.0 97.0 14356 0.0274 0.9550 0.9641 0.9595 0.9973
0.0 98.0 14504 0.0275 0.9552 0.9643 0.9597 0.9973
0.0 99.0 14652 0.0274 0.9549 0.9638 0.9593 0.9973
0.0 100.0 14800 0.0274 0.9550 0.9638 0.9594 0.9973

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deivism/bert-finetuned-ner

Finetuned
(2031)
this model