|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
- peft |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
datasets: |
|
- b-mc2/sql-create-context |
|
model-index: |
|
- name: mistral-7b-text-to-sql |
|
results: [] |
|
reference: |
|
- https://www.philschmid.de/fine-tune-llms-in-2024-with-trl |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mistral-7b-text-to-sql |
|
|
|
- This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the b-mc2/sql-create-context dataset. |
|
- These are the adapter weights, and the code to use these for generation is given below. |
|
- A full model will be uploaded at a later date. |
|
- Primary reference: https://www.philschmid.de/fine-tune-llms-in-2024-with-trl |
|
|
|
## Model description |
|
|
|
- Model type: Language model |
|
- Language(s) (NLP): English |
|
- License: Apache 2.0 |
|
- Finetuned from model : Mistral-7B-v0.1 |
|
|
|
## How to get started with the model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, pipeline |
|
from datasets import load_dataset |
|
from peft import AutoPeftModelForCausalLM |
|
from random import randint |
|
|
|
peft_model_id = "delayedkarma/mistral-7b-text-to-sql" |
|
|
|
# Load Model with PEFT adapter |
|
model = AutoPeftModelForCausalLM.from_pretrained( |
|
peft_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(peft_model_id) |
|
# load into pipeline |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
# Load dataset and Convert dataset to OAI messages |
|
system_message = """You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA. |
|
SCHEMA: |
|
{schema}""" |
|
|
|
def create_conversation(sample): |
|
return { |
|
"messages": [ |
|
{"role": "system", "content": system_message.format(schema=sample["context"])}, |
|
{"role": "user", "content": sample["question"]}, |
|
{"role": "assistant", "content": sample["answer"]} |
|
] |
|
} |
|
|
|
# Load dataset from the hub |
|
dataset = load_dataset("b-mc2/sql-create-context", split="train") |
|
dataset = dataset.shuffle().select(range(100)) |
|
|
|
# Convert dataset to OAI messages |
|
dataset = dataset.map(create_conversation, remove_columns=dataset.features, batched=False) |
|
|
|
dataset = dataset.train_test_split(test_size=20/100) |
|
|
|
# Evaluate |
|
eval_dataset = dataset['test'] |
|
rand_idx = randint(0, len(eval_dataset)) |
|
|
|
# Test on sample |
|
prompt = pipe.tokenizer.apply_chat_template(eval_dataset[rand_idx]["messages"][:2], tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id) |
|
|
|
print(f"Query:\n{eval_dataset[rand_idx]['messages'][1]['content']}") |
|
print(f"Original Answer:\n{eval_dataset[rand_idx]['messages'][2]['content']}") |
|
print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}") |
|
|
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 6 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 3 |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.2.dev0 |
|
- Transformers 4.36.2 |
|
- Pytorch 2.2.2 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.2 |