|
--- |
|
license: mit |
|
language: |
|
- ru |
|
library_name: transformers |
|
--- |
|
|
|
# llama-600M-rus |
|
|
|
Simple and customized amateur experimental model pretrained on approximately 60 Mb of text fiction books from the scratch.<br> |
|
It could generate amateur, but more or less adequate output as well (in respect of training tokens).<br> |
|
The work can be used as a checkpoint for the further training or for experiments.<br> |
|
|
|
Simple usage example: |
|
|
|
```python |
|
from transformers import LlamaTokenizerFast, LlamaForCausalLM |
|
model = LlamaForCausalLM.from_pretrained('demetera/llama-600M-rus') |
|
tokenizer = LlamaTokenizerFast.from_pretrained('demetera/llama-600M-rus') |
|
|
|
prompt = "Я вышел и улицу и" |
|
inputs = tokenizer(prompt, return_tensors='pt') |
|
outputs = model.generate(inputs.input_ids, attention_mask = inputs.attention_mask, max_new_tokens=250, do_sample=True, top_k=50, top_p=0.95) |
|
|
|
print (tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |