Eval Results
precision recall f1-score support
Alakasiz 0.87 0.91 0.89 734
Barinma 0.79 0.89 0.84 207
Elektronik 0.69 0.83 0.75 130
Giysi 0.71 0.81 0.76 94
Kurtarma 0.82 0.85 0.83 362
Lojistik 0.57 0.67 0.62 112
Saglik 0.68 0.85 0.75 108
Su 0.56 0.76 0.64 78
Yagma 0.60 0.77 0.68 31
Yemek 0.71 0.89 0.79 117
micro avg 0.77 0.86 0.81 1973
macro avg 0.70 0.82 0.76 1973
weighted avg 0.78 0.86 0.82 1973
samples avg 0.83 0.88 0.84 1973
Training Params:
{'per_device_train_batch_size': 32,
'per_device_eval_batch_size': 32,
'learning_rate': 5.8679699888213376e-05,
'weight_decay': 0.03530961718117487,
'num_train_epochs': 4,
'lr_scheduler_type': 'cosine',
'warmup_steps': 40,
'seed': 42,
'fp16': True,
'load_best_model_at_end': True,
'metric_for_best_model': 'macro f1',
'greater_is_better': True
}
Threshold:
- Best Threshold: 0.40
Class Loss Weights
- Same as Anıl's approach:
[1.0,
1.5167249178108022,
1.7547338578655642,
1.9610520059358458,
1.8684086209021484,
1.8019018017117145,
2.110648663094536,
3.081208739200435,
1.7994815143101963]
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- recall on deprem_private_dataset_v1_2self-reported0.820
- f1 on deprem_private_dataset_v1_2self-reported0.760