metadata
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-large-v2
datasets:
- audiofolder
model-index:
- name: large-v2-no-bg-v1
results: []
large-v2-no-bg-v1
This model is a fine-tuned version of openai/whisper-large-v2 on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6263
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6361 | 142.8571 | 500 | 1.6697 |
1.257 | 285.7143 | 1000 | 1.2417 |
0.9481 | 428.5714 | 1500 | 0.8995 |
0.8397 | 571.4286 | 2000 | 0.8044 |
0.7741 | 714.2857 | 2500 | 0.7487 |
0.7336 | 857.1429 | 3000 | 0.7035 |
0.6932 | 1000.0 | 3500 | 0.6689 |
0.6626 | 1142.8571 | 4000 | 0.6449 |
0.6501 | 1285.7143 | 4500 | 0.6310 |
0.6413 | 1428.5714 | 5000 | 0.6263 |
Framework versions
- PEFT 0.10.0
- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1