dfurman's picture
Update README.md
d887e2e
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ConvNext-base-chesapeake-land-cover-v0
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9918582375478927
widget:
  - src: >-
      https://imgs.mongabay.com/wp-content/uploads/sites/20/2020/04/07204605/amazon_coca_01.jpg
    example_title: Tree Canopy
  - src: >-
      https://images.ctfassets.net/nzn0tepgtyr1/4tyavnFHhmNuVky1ISq51k/64aaf596f6b8ee12d0f0e898679c8f4f/Hero_Image.jpg?w=1024&h=710&fl=progressive&q=50&fm=jpg&bg=transparent
    example_title: Low Vegetation
  - src: >-
      https://outline-prod.imgix.net/20170228-YxGtsv8J0ePP0rXcnle2?auto=format&q=60&w=1280&s=27916f48ed9226c2a2b7848de8d7c0d1
    example_title: Impervious Surfaces
  - src: >-
      https://clarity.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/MapServer/tile/15/11883/10109
    example_title: Water

ConvNext-base-chesapeake-land-cover-v0

This model is a fine-tuned version of facebook/convnext-base-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0269
  • Accuracy: 0.9919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0076 3.45 300 0.0269 0.9919

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.0
  • Tokenizers 0.13.2