Text Generation
PEFT
Safetensors
Falcon-7B-Chat-v0.1 / README.md
dfurman's picture
Update README.md
d0fa7b9
|
raw
history blame
5.12 kB
metadata
datasets:
  - OpenAssistant/oasst1
pipeline_tag: text-generation
license: tii-falcon-llm
language:
  - en

πŸš€ Falcon-7b-chat-oasst1

Falcon-7b-chat-oasst1 is a chatbot-like model for dialogue generation. It was built by fine-tuning Falcon-7B on the OpenAssistant/oasst1 dataset.

Model Summary

Model Details

The model was fine-tuned in 8-bit precision using πŸ€— peft adapters, transformers, and bitsandbytes. Training relied on a method called "Low Rank Adapters" (LoRA), specifically the QLoRA variant. The run took approximately 3 hours and was executed on a workstation with a single A100-SXM NVIDIA GPU with 37 GB of available memory. See attached Colab Notebook for the code and hyperparams used to train the model.

Model Date

May 30, 2023

Quick Start

To prompt the chat model, use the following format:

<human>: [Instruction]
<bot>:

Example Dialogue 1

Prompter:

"""<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
<bot>:"""

Falcon-7b-chat-oasst1:

[coming]

Example Dialogue 2

Prompter:

<human>: Create a list of four things to do in San Francisco.
<bot>:

Falcon-7b-chat-oasst1:

[coming]

Direct Use

This model has been finetuned on conversation trees from OpenAssistant/oasst1 and should only be used on data of a similar nature.

Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.

Bias, Risks, and Limitations

This model is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

Recommendations

We recommend users of this model to develop guardrails and to take appropriate precautions for any production use.

How to Get Started with the Model

Setup

# Install packages
!pip install -q -U bitsandbytes loralib einops
!pip install -q -U git+https://github.com/huggingface/transformers.git 
!pip install -q -U git+https://github.com/huggingface/peft.git
!pip install -q -U git+https://github.com/huggingface/accelerate.git

GPU Inference in 8-bit

This requires a GPU with at least 12 GB of memory.

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# load the model
peft_model_id = "dfurman/falcon-7b-chat-oasst1"
config = PeftConfig.from_pretrained(peft_model_id)

model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    device_map={"":0},
    trust_remote_code=True,
    load_in_8bit=True,
)

tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token

model = PeftModel.from_pretrained(model, peft_model_id)

# run the model
prompt = """<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
<bot>:"""

batch = tokenizer(
    prompt,
    padding=True,
    truncation=True,
    return_tensors='pt'
)
batch = batch.to('cuda:0')

with torch.cuda.amp.autocast():
    output_tokens = model.generate(
        input_ids = batch.input_ids, 
        max_new_tokens=200,
        temperature=0.7,
        top_p=0.7,
        num_return_sequences=1,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
    )

# Inspect outputs
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))

Reproducibility

See attached Colab Notebook for the code (and hyperparams) used to train the model.

CUDA Info

  • CUDA Version: 12.0
  • Hardware: 1 A100-SXM
  • Max Memory: {0: "37GB"}
  • Device Map: {"": 0}

Package Versions Employed

  • torch: 2.0.1+cu118
  • transformers: 4.30.0.dev0
  • peft: 0.4.0.dev0
  • accelerate: 0.19.0
  • bitsandbytes: 0.39.0
  • einops: 0.6.1