leaderboard-pr-bot's picture
Adding Evaluation Results
f86dd2d verified
|
raw
history blame
5.58 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- NousResearch/Nous-Hermes-2-Yi-34B
- jondurbin/bagel-dpo-34b-v0.2
base_model:
- NousResearch/Nous-Hermes-2-Yi-34B
- jondurbin/bagel-dpo-34b-v0.2
model-index:
- name: HermesBagel-34B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.56
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.34
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
name: Open LLM Leaderboard
---
# HermesBagel-34B-v0.1
HermesBagel-34B-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
* [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: NousResearch/Nous-Hermes-2-Yi-34B
layer_range: [0, 60]
- model: jondurbin/bagel-dpo-34b-v0.2
layer_range: [0, 60]
merge_method: slerp
base_model: NousResearch/Nous-Hermes-2-Yi-34B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## Basic Usage
<details>
<summary>Setup</summary>
```python
!pip install -qU transformers accelerate bitsandbytes
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig
)
import torch
model = "dfurman/HermesBagel-34B-v0.1"
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=nf4_config,
)
```
</details>
```python
messages = [
{"role": "user", "content": "What is a large language model?"},
]
print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))
print("\n\n*** Generate:")
with torch.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
input_ids=input_ids.to("cuda"),
max_new_tokens=256,
return_dict_in_generate=True,
)
response = tokenizer.decode(
output["sequences"][0][len(input_ids[0]):],
skip_special_tokens=True
)
print(response)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__HermesBagel-34B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |75.15|
|AI2 Reasoning Challenge (25-Shot)|70.56|
|HellaSwag (10-Shot) |85.74|
|MMLU (5-Shot) |77.38|
|TruthfulQA (0-shot) |67.34|
|Winogrande (5-shot) |84.61|
|GSM8k (5-shot) |65.28|