metadata
library_name: transformers
license: llama3.2
base_model: diabolic6045/open-llama-3.2-1B-Instruct
tags:
- axolotl
- OpenHermes
- llama-cpp
- gguf-my-repo
datasets:
- diabolic6045/OpenHermes-2.5_alpaca_10
pipeline_tag: text-generation
model-index:
- name: open-llama-Instruct
results: []
diabolic6045/open-llama-3.2-1B-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from diabolic6045/open-llama-3.2-1B-Instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo diabolic6045/open-llama-3.2-1B-Instruct-Q4_K_M-GGUF --hf-file open-llama-3.2-1b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo diabolic6045/open-llama-3.2-1B-Instruct-Q4_K_M-GGUF --hf-file open-llama-3.2-1b-instruct-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo diabolic6045/open-llama-3.2-1B-Instruct-Q4_K_M-GGUF --hf-file open-llama-3.2-1b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo diabolic6045/open-llama-3.2-1B-Instruct-Q4_K_M-GGUF --hf-file open-llama-3.2-1b-instruct-q4_k_m.gguf -c 2048