Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen1.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 4c701867310210d1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4c701867310210d1_train_data.json
  type:
    field_input: head
    field_instruction: relation
    field_output: tail
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: diaenra/90bfcbe0-d594-499b-b298-39112f7043e2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/4c701867310210d1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: diaenra-tao-miner
wandb_mode: online
wandb_name: 90bfcbe0-d594-499b-b298-39112f7043e2
wandb_project: tao
wandb_run: diaenra
wandb_runid: 90bfcbe0-d594-499b-b298-39112f7043e2
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true

90bfcbe0-d594-499b-b298-39112f7043e2

This model is a fine-tuned version of Qwen/Qwen1.5-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1820

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
3.8038 0.0000 1 7.7366
3.2434 0.0004 25 3.6348
3.8151 0.0007 50 3.4787
3.1871 0.0011 75 3.2774
3.2839 0.0014 100 3.1820

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for diaenra/90bfcbe0-d594-499b-b298-39112f7043e2

Base model

Qwen/Qwen1.5-7B
Adapter
(6284)
this model