dictabert-joint / README.md
Shaltiel's picture
Update README.md
91514a1
|
raw
history blame
1.92 kB
metadata
license: cc-by-4.0
language:
  - he
inference: false

DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

State-of-the-art language model for Hebrew, released here.

This is the fine-tuned model for the joint parsing of the following tasks:

  • Prefix Segmentation
  • Morphological Disabmgiuation
  • Lexicographical Analysis (Lemmatization)
  • Syntactical Parsing (Dependency-Tree)
  • Named-Entity Recognition

For the bert-base models for other tasks, see here.

Sample usage:

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-joint')
model = AutoModel.from_pretrained('dicta-il/dictabert-joint', trust_remote_code=True)

model.eval()

sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 诇讬诪讜讚讬讜 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
print(model.predict([sentence], tokenizer))

Output:

TBD

Citation

If you use DictaBERT in your research, please cite DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

BibTeX:

@misc{shmidman2023dictabert,
      title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
      year={2023},
      eprint={2308.16687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0