Returns car brand with about 69% accuracy given an image.

See https://www.kaggle.com/code/dima806/car-brands-image-detection-vit for details.

image/png

Classification report:

               precision    recall  f1-score   support

        Acura     0.3799    0.5658    0.4546      2066
   Alfa Romeo     0.7487    0.9424    0.8344      2067
 Aston Martin     0.9377    0.8162    0.8727      2067
         Audi     0.3810    0.6623    0.4837      2067
          BMW     0.4379    0.1824    0.2575      2067
      Bentley     0.7206    0.8360    0.7740      2067
      Bugatti     0.9862    1.0000    0.9930      2067
        Buick     0.5081    0.4981    0.5031      2066
     Cadillac     0.7252    0.4315    0.5411      2067
    Chevrolet     0.3715    0.1553    0.2190      2067
     Chrysler     0.6298    0.7551    0.6868      2066
      Citroen     0.9597    0.9903    0.9748      2067
       Daewoo     0.9745    1.0000    0.9871      2067
        Dodge     0.5020    0.6618    0.5710      2067
      Ferrari     0.9238    0.9908    0.9561      2067
         Fiat     0.8116    0.8670    0.8384      2067
         Ford     0.4484    0.0798    0.1355      2067
          GMC     0.5630    0.7842    0.6555      2067
      Genesis     0.6549    0.8916    0.7552      2067
        Honda     0.3684    0.3880    0.3779      2067
       Hudson     0.9584    0.8132    0.8798      2066
      Hyundai     0.3593    0.3527    0.3560      2067
     Infiniti     0.4569    0.6546    0.5382      2067
       Jaguar     0.4496    0.2975    0.3581      2067
         Jeep     0.8256    0.8563    0.8407      2067
          Kia     0.3308    0.1035    0.1577      2067
  Lamborghini     0.9252    0.9811    0.9523      2067
   Land Rover     0.5205    0.8365    0.6417      2067
        Lexus     0.4655    0.2221    0.3007      2067
      Lincoln     0.5455    0.5244    0.5348      2067
           MG     0.7773    0.9879    0.8700      2067
     Maserati     0.7179    0.8162    0.7639      2067
        Mazda     0.4517    0.4664    0.4589      2067
      McLaren     0.9782    1.0000    0.9890      2066
Mercedes-Benz     0.3383    0.0329    0.0600      2067
         Mini     0.8048    0.9337    0.8645      2067
   Mitsubishi     0.4671    0.7928    0.5878      2066
       Nissan     0.5305    0.0672    0.1194      2067
   Oldsmobile     0.8832    0.9918    0.9344      2067
      Peugeot     0.9070    1.0000    0.9512      2067
      Pontiac     0.9641    0.9884    0.9761      2067
      Porsche     0.5380    0.6376    0.5836      2067
          Ram     0.8475    0.9652    0.9025      2067
   Ram Trucks     0.9626    0.9831    0.9727      2067
      Renault     0.9686    1.0000    0.9840      2066
  Rolls-Royce     0.8737    0.9671    0.9180      2067
         Saab     0.9311    1.0000    0.9643      2067
        Smart     0.9247    0.9627    0.9433      2066
   Studebaker     0.9645    1.0000    0.9819      2067
       Subaru     0.4404    0.3112    0.3647      2066
       Suzuki     0.9425    1.0000    0.9704      2067
        Tesla     0.7482    0.9390    0.8328      2066
       Toyota     0.2884    0.0755    0.1196      2067
   Volkswagen     0.4282    0.4964    0.4598      2067
        Volvo     0.4807    0.5300    0.5041      2066

     accuracy                         0.6925    113674
    macro avg     0.6733    0.6925    0.6638    113674
 weighted avg     0.6733    0.6925    0.6638    113674
Downloads last month
32
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference API
Unable to determine this model's library. Check the docs .

Model tree for dima806/car_brands_image_detection

Finetuned
(1801)
this model

Space using dima806/car_brands_image_detection 1