See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: DeepMount00/Llama-3-8b-Ita
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c27ad72042f3def8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c27ad72042f3def8_train_data.json
type:
field_instruction: inputs
field_output: targets
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik2987/085cc89c-8663-43ff-ae30-3e0b4ab741e3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/c27ad72042f3def8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2028
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 085cc89c-8663-43ff-ae30-3e0b4ab741e3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 085cc89c-8663-43ff-ae30-3e0b4ab741e3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
085cc89c-8663-43ff-ae30-3e0b4ab741e3
This model is a fine-tuned version of DeepMount00/Llama-3-8b-Ita on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2567 | 0.0316 | 1 | 1.2329 |
1.0618 | 0.1579 | 5 | 1.0954 |
0.8714 | 0.3158 | 10 | 0.8887 |
0.9889 | 0.4737 | 15 | 0.8109 |
0.7376 | 0.6316 | 20 | 0.7796 |
0.8079 | 0.7895 | 25 | 0.7661 |
0.7532 | 0.9474 | 30 | 0.7561 |
0.7877 | 1.1053 | 35 | 0.7507 |
0.7139 | 1.2632 | 40 | 0.7521 |
0.7842 | 1.4211 | 45 | 0.7522 |
0.8305 | 1.5789 | 50 | 0.7518 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2