See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b27572b4fc9aa1d2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b27572b4fc9aa1d2_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik2987/5da91e15-c149-487a-bafd-afbca338d562
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/b27572b4fc9aa1d2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5da91e15-c149-487a-bafd-afbca338d562
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5da91e15-c149-487a-bafd-afbca338d562
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
5da91e15-c149-487a-bafd-afbca338d562
This model is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2134
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4321 | 0.0059 | 1 | 1.4157 |
1.4 | 0.0293 | 5 | 1.3746 |
1.2706 | 0.0587 | 10 | 1.3146 |
1.2737 | 0.0880 | 15 | 1.2740 |
1.2718 | 0.1173 | 20 | 1.2493 |
1.2716 | 0.1466 | 25 | 1.2356 |
1.1684 | 0.1760 | 30 | 1.2252 |
1.2098 | 0.2053 | 35 | 1.2192 |
1.2064 | 0.2346 | 40 | 1.2153 |
1.2187 | 0.2639 | 45 | 1.2137 |
1.2598 | 0.2933 | 50 | 1.2134 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Model tree for dimasik2987/5da91e15-c149-487a-bafd-afbca338d562
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct