Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 3293ad2e2e3e3182_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3293ad2e2e3e3182_train_data.json
  type:
    field_input: endings
    field_instruction: ctx_a
    field_output: ctx_b
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik87/54d50cf6-2941-47f0-bd9f-cad020f07c0e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/3293ad2e2e3e3182_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 2028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 54d50cf6-2941-47f0-bd9f-cad020f07c0e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 54d50cf6-2941-47f0-bd9f-cad020f07c0e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

54d50cf6-2941-47f0-bd9f-cad020f07c0e

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
12.8505 0.0003 1 nan
12.885 0.0008 3 nan
10.1862 0.0017 6 nan
8.8868 0.0025 9 nan
6.8495 0.0034 12 nan
3.4316 0.0042 15 nan
3.4841 0.0051 18 nan
2.2475 0.0059 21 nan
0.67 0.0068 24 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dimasik87/54d50cf6-2941-47f0-bd9f-cad020f07c0e

Base model

Qwen/Qwen2.5-1.5B
Adapter
(133)
this model