dinalzein's picture
Update README.md
c369439
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-base-finetuned-language-identification
    results: []

xlm-roberta-base-finetuned-language-detection-new

This model is a fine-tuned version of xlm-roberta-base on the Language Identification dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.0436
  • Accuracy: 0.9959

Model description

The model used in this task is XLM-RoBERTa, a transformer model with a classification head on top.

Intended uses & limitations

It identifies the language a document is written in and it supports 20 different langauges:

Arabic (ar), Bulgarian (bg), German (de), Modern greek (el), English (en), Spanish (es), French (fr), Hindi (hi), Italian (it), Japanese (ja), Dutch (nl), Polish (pl), Portuguese (pt), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnamese (vi), Chinese (zh)

Training and evaluation data

The model is fine-tuned on the Language Identification dataset, a corpus consists of text from 20 different languages. The dataset is split with 7000 sentences for training, 1000 for validating, and 1000 for testing. The accuracy on the test set is 99.5%.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0493 1.0 35000 0.0407 0.9955
0.018 2.0 70000 0.0436 0.9959

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1