Edit model card

text-to-icpc2

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7544
  • Accuracy: 0.6679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.2683 1.0 1093 5.0759 0.0819
4.0898 2.0 2186 4.1968 0.2182
3.4238 3.0 3279 3.5428 0.3321
2.9107 4.0 4372 3.0363 0.4099
2.4188 5.0 5465 2.6765 0.4895
1.9262 6.0 6558 2.3752 0.5339
1.6271 7.0 7651 2.1641 0.5787
1.3296 8.0 8744 1.9912 0.6162
1.1168 9.0 9837 1.8705 0.6455
0.8994 10.0 10930 1.8159 0.6624
0.8697 11.0 12023 1.7745 0.6679
0.8058 12.0 13116 1.7544 0.6679

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.2.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for diogocarapito/text-to-icpc2

Finetuned
(2123)
this model