hing-roberta-CM-run-5

This model is a fine-tuned version of l3cube-pune/hing-roberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6447
  • Accuracy: 0.7525
  • Precision: 0.7030
  • Recall: 0.7120
  • F1: 0.7064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9492 1.0 497 0.7476 0.6157 0.6060 0.6070 0.5171
0.7013 2.0 994 0.7093 0.6982 0.6716 0.6864 0.6663
0.4871 3.0 1491 0.8294 0.7284 0.6714 0.6867 0.6723
0.3838 4.0 1988 1.1275 0.7505 0.6969 0.7025 0.6994
0.254 5.0 2485 1.3831 0.7264 0.6781 0.6975 0.6850
0.1765 6.0 2982 2.0625 0.7384 0.7068 0.6948 0.6896
0.1127 7.0 3479 1.9691 0.7425 0.6925 0.7065 0.6982
0.0757 8.0 3976 2.3871 0.7425 0.7183 0.6926 0.6924
0.0572 9.0 4473 2.4037 0.7344 0.6916 0.6929 0.6882
0.0458 10.0 4970 2.3062 0.7586 0.7174 0.7219 0.7164
0.0405 11.0 5467 2.5591 0.7445 0.6925 0.6964 0.6942
0.0292 12.0 5964 2.5215 0.7384 0.6875 0.6998 0.6917
0.0264 13.0 6461 2.7551 0.7586 0.7122 0.7035 0.7037
0.0299 14.0 6958 2.6536 0.7465 0.7114 0.7088 0.7035
0.0208 15.0 7455 2.5190 0.7505 0.6989 0.7083 0.7030
0.0263 16.0 7952 2.7092 0.7485 0.7076 0.6998 0.6962
0.0077 17.0 8449 2.5933 0.7525 0.7042 0.7143 0.7081
0.009 18.0 8946 2.5831 0.7485 0.6991 0.7152 0.7050
0.0108 19.0 9443 2.6360 0.7545 0.7050 0.7167 0.7098
0.0077 20.0 9940 2.6447 0.7525 0.7030 0.7120 0.7064

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dipteshkanojia/hing-roberta-CM-run-5

Finetuned
(9)
this model