hing-roberta-NCM-run-3

This model is a fine-tuned version of l3cube-pune/hing-roberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2053
  • Accuracy: 0.6645
  • Precision: 0.6565
  • Recall: 0.6479
  • F1: 0.6505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9077 1.0 927 0.8070 0.6397 0.6581 0.6439 0.6382
0.6915 2.0 1854 0.8635 0.6462 0.6368 0.6439 0.6357
0.4785 3.0 2781 1.0961 0.6613 0.6510 0.6556 0.6505
0.3356 4.0 3708 1.6867 0.6667 0.6623 0.6611 0.6595
0.2622 5.0 4635 2.0271 0.6602 0.6589 0.6451 0.6482
0.1957 6.0 5562 2.2565 0.6634 0.6763 0.6517 0.6541
0.1419 7.0 6489 2.4627 0.6440 0.6487 0.6203 0.6230
0.1126 8.0 7416 2.7844 0.6483 0.6347 0.6268 0.6295
0.091 9.0 8343 2.8776 0.6440 0.6302 0.6315 0.6307
0.0758 10.0 9270 3.0246 0.6451 0.6325 0.6227 0.6256
0.0674 11.0 10197 2.9389 0.6721 0.6605 0.6501 0.6530
0.0542 12.0 11124 3.0503 0.6429 0.6456 0.6315 0.6330
0.0576 13.0 12051 3.0252 0.6483 0.6427 0.6435 0.6398
0.0337 14.0 12978 3.1160 0.6731 0.6676 0.6545 0.6575
0.0318 15.0 13905 3.0740 0.6807 0.6733 0.6647 0.6671
0.0188 16.0 14832 3.0890 0.6721 0.6633 0.6574 0.6589
0.0258 17.0 15759 3.1519 0.6634 0.6602 0.6456 0.6490
0.017 18.0 16686 3.1503 0.6688 0.6638 0.6547 0.6568
0.0146 19.0 17613 3.2083 0.6688 0.6621 0.6516 0.6545
0.0125 20.0 18540 3.2053 0.6645 0.6565 0.6479 0.6505

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dipteshkanojia/hing-roberta-NCM-run-3

Finetuned
(9)
this model